
Database Connectivity
Toolset User Manual

Database Connectivity Toolset User Manual

May 2001 Edition
Part Number 321525C-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 514 694 8521,
Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838, China (ShenZhen) 0755 3904939,
Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,
Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Malaysia 603 9596711, Mexico 5 280 7625, Netherlands 0348 433466,
New Zealand 09 914 0488, Norway 32 27 73 00, Poland 0 22 528 94 06, Portugal 351 1 726 9011,
Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51,
Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

Copyright © 1997, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Database Connectivity Toolset User Manual

Contents

About This Manual
Conventions ... ix
Related Documentation..x

Chapter 1
Introduction

Overview..1-1
Installing the LabVIEW Database Connectivity Toolset ..1-2
Upgrading from Previous Versions ...1-3

The Connection Reference Data Type Has Changed1-5

Chapter 2
Getting Started with the Database Connectivity Toolset

Database Concepts ...2-1
Background of the Database Connectivity Toolset ...2-3

ODBC Standard...2-3
Structured Query Language (SQL) ...2-4
SQL Dialects ...2-6

Universal Data Access, OLE DB, and ADO ...2-6
OLE DB Standard..2-7
OLE DB Provider for ODBC ..2-8
OLE DB Provider for SQL Server ..2-9
OLE DB Provider for Jet ...2-10
OLE DB Provider for Oracle...2-11
ActiveX Data Objects (ADO) ...2-12

Chapter 3
Using the Database Connectivity Toolset

Connecting to a Database ..3-1
DSNs and Data Source Types ...3-1
ODBC Administrator...3-2
Examples of Using DSNs..3-4
UDLs ...3-7
Configuring a UDL..3-9
Example Using a UDL ..3-11

High-Level Database VIs...3-11
Writing Data to a Database..3-12

Contents

Database Connectivity Toolset User Manual vi ni.com

Reading Data from a Database.. 3-13
Reading Specific Data from a Table ... 3-16
Creating and Deleting Tables.. 3-17

Supported Data Types ... 3-18
Working with Date/Time .. 3-19
Handling NULL Values .. 3-20
Currency and Boolean Data Types ... 3-22

Using the Database Connectivity Toolset Examples... 3-22
Using the Examples with Other Databases ... 3-22
Using the Examples without a Database... 3-23

Chapter 4
Database Connectivity Toolset Utilities

Getting Table and Column Information .. 4-1
Getting and Setting Database Properties ... 4-2

ADO Reference Classes.. 4-3
Specific Properties .. 4-4

Formatting Date and Time... 4-4
Performing Database Transactions.. 4-5

Locking Transactions and Setting Isolation Levels .. 4-6
Writing and Reading Data Files .. 4-8

Chapter 5
Advanced Database Operations

Executing SQL Statements and Fetching Data ... 5-1
Navigating through Database Records .. 5-3

Using Cursors.. 5-3
Cursor Types ... 5-4
Moving Through Recordsets... 5-6

Using Parameterized Statements ... 5-8
Using Stored Procedures ... 5-10

Creating Stored Procedures... 5-11
Running Stored Procedures without Parameters... 5-12
Running Stored Procedures with Parameters.. 5-13

Contents

© National Instruments Corporation vii Database Connectivity Toolset User Manual

Chapter 6
Building Applications

Using the Database Connectivity Toolset Build Script ...6-1
Installing MDAC ...6-2

MDAC 2.6 ...6-4
Using Non-English Versions of Windows ..6-4

Using Data Links and DSNs..6-5

Appendix A
SQL Quick-Reference

Appendix B
References

Appendix C
Supported Data Types

Appendix D
Technical Support Resources

Glossary

Index

© National Instruments Corporation ix Database Connectivity Toolset User Manual

About This Manual

The LabVIEW Database Connectivity Toolset User Manual describes the
virtual instruments (VIs) used to communicate and pass data between
LabVIEW and either a local or a remote database management system
(DBMS). You should be familiar with the operation of LabVIEW, your
computer, and your computer operating system.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

About This Manual

Database Connectivity Toolset User Manual x ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• LabVIEW Database Connectivity Toolset Help, available by selecting
Help»Database Toolset VIs and Examples

• LabVIEW Help, available by selecting Help»Contents and Index

© National Instruments Corporation 1-1 Database Connectivity Toolset User Manual

1
Introduction

This chapter describes the installation procedure, installed components,
and the main features of the LabVIEW Database Connectivity Toolset.

Overview
The LabVIEW Database Connectivity Toolset is an add-on package for
accessing databases. The toolkit contains a set of high-level functions for
performing the most common database tasks and advanced functions for
customized tasks.

The following list describes the main features of the LabVIEW Database
Connectivity Toolset:

• Works with any provider that adheres to the Microsoft ActiveX Data
Object (ADO) standard.

• Works with any database driver that complies with ODBC or OLE DB.

• Maintains a high level of portability. In many cases, you can port your
application to another database by changing the connection string you
pass to the DB Tools Open Connection VI.

• Converts database column values from native data types to standard
LabVIEW Database Connectivity Toolset data types, further
enhancing portability.

• The default ADO ODBC provider permits the use of SQL statements
with all supported database systems, even non-SQL systems.

• Includes VIs to retrieve the name and data type of a column returned
by a SELECT statement.

• Creates tables and selects, inserts, updates, and deletes records without
using SQL statements.

Chapter 1 Introduction

Database Connectivity Toolset User Manual 1-2 ni.com

Because of the wide range of databases the LabVIEW Database
Connectivity Toolset works with, some portability issues remain. Consider
the following issues when choosing your database system:

• Some database systems, particularly the flat-file databases such as
dBase, do not support floating–point numbers. In cases where
floating–point numbers are not supported, the toolkit converts
floating–point numbers to the nearest equivalent, usually binary coded
decimal (BCD), before storing them in the database. Very large or very
small floating–point numbers can easily pass the upper or lower limits
of the precision available for a BCD value.

• The Microsoft ODBC driver for Oracle and the Microsoft OLE DB
Provider for Oracle do not support BLOB (binary) data types. You can
not use Oracle with the Database Connectivity Toolset for binary data
with these drivers. Instead, use the OLE DB Provider (and ODBC
driver) provided by Oracle from their web site at:
http://technet/oracle.com/tech/nt/ole_db/

• Restrictions on column names vary among database systems. For
maximum portability, limit column names to ten uppercase characters
without spaces. You might be able access longer column (field) names
or names that contain spaces by enclosing the name in double quotes.

• Some database systems do not support date, time, or date and time data
types.

Installing the LabVIEW Database Connectivity Toolset
Before you install the LabVIEW Database Connectivity Toolset, uninstall
previous versions of the SQL Toolkit.

The LabVIEW Database Connectivity Toolset is shipped on a CD. If you
need to install it on a system without a CD drive, either mount it as a
volume over a network or create a set of floppies. Install the toolset by
inserting the LabVIEW Database Connectivity Toolset CD into the CD
drive and running setup.exe using one of the following methods:

• Select Start»Run from the Windows taskbar. In the dialog box that
appears, enter x:\setup\database.exe, where x denotes the
proper letter designation of the drive. Click the OK button and follow
the instructions that appear on your screen.

• Launch Windows Explorer. Click the icon of the drive that contains the
installation disk. Double-click setup.exe in the list of files on the
installation disk.

Chapter 1 Introduction

© National Instruments Corporation 1-3 Database Connectivity Toolset User Manual

When the installation dialog box appears on the screen, you can change the
default directories for the toolkit. The LabVIEW Database Connectivity
Toolset installation program installs the following components:

• Database Connectivity Toolset—Installs the Database Connectivity
Toolset components and examples.

• SQL Compatibility VIs—Installs a set of VI libraries compatible with
the SQL Toolkit. Install this component only if you have existing
applications that use the SQL Toolkit.

• MDAC—Installs the Microsoft Data Access Components version 2.5.
This includes ActiveX Data Objects (ADO) software and drivers,
ODBC drivers, and OLE DB drivers.

Note If you are using a non-English version of Windows, do no install the MDAC
component. The typical installation of the Database Connectivity Toolset installs the
English version of MDAC. You should do a custom install and not include the MDAC
component. You get the localized version of MDAC and instructions for your OS from the
Microsoft web site at http://www.microsoft.com/data/

In addition, the Database Connectivity Toolset installer modifies or creates
an entry in the registry under the HKEY_LOCAL_MACHINE»National
Instruments»LabVIEW»addons key.

Upgrading from Previous Versions
This section provides an overview of how to upgrade from previous
versions of the SQL Toolkit.

The new LabVIEW Database Connectivity Toolset uses Microsoft ADO
(ActiveX Data Objects) technology for Universal Data Access. ADO is a
thin ActiveX wrapper to OLE DB, an updated version of the ODBC
standard. Because ADO is an ActiveX interface, you can automate it from
LabVIEW using the Invoke and Property Nodes. Therefore, you can use the
LabVIEW Database Connectivity Toolset to communicate between
LabVIEW and any database that has an OLE DB or ODBC driver.

A library of compatibility VIs is included with the Database Connectivity
Toolset so users of the SQL Toolkit can convert their applications to
the ADO technology. These compatibility VIs install into the
LabVIEW\vi.lib\addons_SQL directory in the same directory and
VI library structure used by the SQL Toolkit. VIs with the same names
and connectors are included for most of the SQL Toolkit. However, ADO

Chapter 1 Introduction

Database Connectivity Toolset User Manual 1-4 ni.com

does not provide all the functionality of the SQL Toolkit. The following VIs
were unable to be reproduced in the compatibility VIs using ADO:

• Get Column Information

• Get Database Information

• Get DSN Information

• Get Procedure Col Information

• Get References

• Get Table Information

• Get Type Information

• Get Column Alias

• Get Column Attributes

• Get Column Expression

• Get Column Width

• Request Column Information

• Request Database Information

• Request DSN Information

• Request Procedure Col Information

• Request Table Information

• Request Type Information

• Clear SQL Parameter

• Close Fetch Log File

• Get Statement Options

• Set Statement Options

• Get Supported Isolation Levels

Although these VIs do not exist in the SQL compatibility VIs, some of the
new Database Connectivity Toolset VIs can perform similar operations.

Note As with any compatibility VI provided for LabVIEW, you should try to convert
applications that use them to use the new technology. Subsequent releases of the Database
Connectivity Toolset might not contain the SQL compatibility VIs.

Chapter 1 Introduction

© National Instruments Corporation 1-5 Database Connectivity Toolset User Manual

The Connection Reference Data Type Has Changed
The connection reference data type for the SQL Toolkit for G is a word
(I16) integer and the connection reference for the Database Connectivity
Toolset is an ActiveX ADO refnum. The entire set of SQL compatibility
VIs now uses the new refnum. You are told to uninstall the SQL Toolkit
before installing the new Database Connectivity Toolset because mixing
the old and new toolkit VIs results in broken connection reference wires
because of this change in data types.

If you have existing subVIs you built that use the old I16 connection
references as inputs/outputs, these wires will be broken when you use the
new SQL compatibility VIs. The SQL compatibility VIs do not include a
converter between the two reference types because the old references are
16-bit integers and the new ActiveX refnums are 32-bit integers. A
converter would be type casting the 32-bit integers to 16-bit integers to pass
the references between subVIs. The converter loses half the information of
the original refnum and while all subVIs would wire to each other correctly,
the ActiveX refnums would be corrupt and result in runtime errors.
Therefore, the connection references are left as incompatible data types and
cause compiler errors (broken wires) to better alert users to the conflict.
You can right-click on the refnum inputs for the SQL compatibility VIs and
select Create»Control/Indicator to get the correct refnum types for your
VIs.

© National Instruments Corporation 2-1 Database Connectivity Toolset User Manual

2
Getting Started with the
Database Connectivity Toolset

This chapter introduces the basic concepts of database interactions using
the LabVIEW Database Connectivity Toolset. It also describes the
Structured Query Language (SQL), the Open Database Connectivity
(ODBC) standard, and ActiveX Data Objects (ADO).

The LabVIEW Database Connectivity Toolset accesses several popular
file-based databases and high-performance Relational Database
Management system (RDBMS) software packages that run on a variety of
computers and operating systems. Through specific application programs,
users can log on to, create, store, modify, retrieve, sort, and manage data in
local or networked databases. Commands expressed in the Structured
Query Language (SQL) perform these functions.

Database Concepts
A database consists of an organized collection of data. Most modern
Database Management Systems (DBMS) store data in tables. The tables are
organized into records, also known as rows, and fields, also known as
columns. Every table in a database must have a unique name. Similarly,
every field within a table must have a unique name.

The database tables have many uses. Table 2-1 is an example table that you
could use with a simple test executive program to record test sequence
results. It contains columns for the unit under test number, the test name,
the test result, and two measurements. The data in the table is not inherently
ordered. Ordering, grouping, and other manipulations of the data occur
when you use a SELECT statement to retrieve the data from the table.
A row can have empty columns, which means that the row contains
NULL values. NULL values for databases are not exactly the same as
NULL values in the C programming language. Refer to Chapter 3,
Handling NULL Values, for more information about how LabVIEW
handles NULL values.

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-2 ni.com

Note The NULL values in a table row are not the same as NULL values in the
C programming language. This manual refers to NULL values in tables as SQL NULL
values, to distinguish them from standard NULL values.

Non-relational databases allow you to store all the information in one large
structure like Table 2-1. This method is sometimes inefficient, because all
of the information is in one table, and searching for a specific piece of data
can be difficult and time-consuming. Relational databases have
information stored in multiple structures, or tables, where each table can be
smaller and contain a specific subset of information. Figure 2-1 shows two
database tables that are related to each other through the lot field.

Figure 2-1. Relational Database Table Concept

Table 2-1. Sample Test Sequence Results

UUT_NUM TEST_NAME RESULT MEAS1 MEAS2

20860B456 TEST1 PASS 0.5 0.6

20860B456 TEST2 PASS 1.2 —

20860B123 TEST1 FAIL –0.1 0.7

20860B789 TEST1 PASS 0.6 0.6

20860B789 TEST2 PASS 1.3 —

Database Table: prodstats

product

widget1

widget2

widget3

widget4

lot

R43E2

R43E5

E43U1

53Q8

build_time

32

50

59

13

Database Table: prodspecs

lot

R43E2

R43E5

E43U1

53Q8

date

10/24/93

10/27/93

06/23/93

01/09/94

material

aluminum

steel

steel

copper

Chapter 2 Getting Started with the Database Connectivity Toolset

© National Instruments Corporation 2-3 Database Connectivity Toolset User Manual

Each column in a table has a data type, such as CHARACTER (fixed and
variable length), NUMBER, DECIMAL, INTEGER, FLOAT, REAL,
DOUBLE PRECISION, DATE, LONG, and RAW. The available data types
vary depending on the DBMS. The LabVIEW Database Connectivity
Toolset uses a set of common data types. The toolset automatically maps
these data types into the appropriate type in the underlying database.
By using the common data types, the toolkit program can access a variety
of databases with little or no modification. Refer to Chapter 3, Using the
Database Connectivity Toolset, for more information about these
supported data types.

Background of the Database Connectivity Toolset
The LabVIEW Database Connectivity Toolset is a re-architecture of the
SQL Toolkit. The SQL Toolkit is built from a code interface node (CIN)
that calls a series of Dynamic Link Libraries (DLLs) provided by a third
party vendor known as INTERSOLV (now called MERANT). These DLLs
made system calls into Microsoft’s application programming interface
(API) for database access called ODBC.

ODBC Standard
The SQL Access Group, including representatives of Microsoft, Tandem,
Oracle, Informix, and Digital Equipment Corporations, developed the
Open Database Connectivity (ODBC) standard as a uniform method for
applications to access databases. ODBC 1.0 released in September 1992.
The standard consists of a multilevel API definition, a driver packaging
standard, an SQL implementation based on ANSI SQL, and a means for
defining and maintaining Data Source Names (DSN). A DSN is a quick
way to refer to a specific database. You specify a DSN with a unique name
and by the ODBC driver that communicates with the physical database,
local or remote. You must define a DSN for each database to which an
application program connects.

The SQL Toolkit currently supports ODBC 2.0. Because the toolkit and the
drivers that come with it comply with the ODBC standard, you can port
LabVIEW database applications to other supported databases with minimal

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-4 ni.com

changes. The SQL Toolkit VIs call the Microsoft API for ODBC. ODBC
then communicates with a database’s specific driver that translates the call
to the database’s low level language, as shown in Figure 2-2.

Figure 2-2. Communication Path between LabVIEW and a Database
Using the SQL Toolkit for G

The SQL Toolkit is compatible with any database providing an ODBC
driver that translates the ODBC calls to the native database language.
You need to know SQL to use the SQL Toolkit.

Structured Query Language (SQL)
The Structured Query Language consists of a set of character string
commands and is a widely supported standard for database access. You can
use the SQL commands to describe, store, retrieve, and manipulate the
rows and columns in database tables. IBM developed the language, and it
became publicly available in the late-1970s. Since then, the American
National Standards Institute (ANSI), the International Standards
Organization (ISO), and the Federal Information Processing Standards
(FIPS) have adopted SQL and most major commercial relational database

LabVIEW Application

SQL Toolkit VIs

ODBC API

ODBC Driver

Database

Chapter 2 Getting Started with the Database Connectivity Toolset

© National Instruments Corporation 2-5 Database Connectivity Toolset User Manual

products support it to some degree. It is a non-procedural language for
processing sets of records in database tables. The following are three
pertinent classes of SQL statements:

• Data Definition/Control Language (DDL/DCL) statements define and
control the structure of the database. They also define and grant access
privileges to database users. Use the statements to create, define, and
alter databases and tables.

• Data Manipulation Language (DML) statements operate on the data
contents of database tables. You use these statements to insert rows of
data into a table, update rows of data in a table, delete rows from a
table, and conduct database transactions.

• Queries are SQL SELECT statements that specify which tables and
rows are retrieved from the database.

Table 2-2 describes some frequently used SQL commands.

Table 2-2. Common SQL Commands

Command Function

CREATE
TABLE

Creates a database table and specifies the name and
data type for each column therein. The result is a
named table in the database. CREATE TABLE is
a DDL command. DROP TABLE is the
complementary DDL command.

INSERT Adds a new data row to the table, allowing values to
be specified for each column. INSERT is a DML
command.

SELECT Initiates a search for all rows in a table whose
column data satisfy specified combinations of
conditions. The result is an active set of rows that
satisfy the search conditions. SELECT is a query
command.

UPDATE Initiates a search as in SELECT, then changes the
contents of specific column data in each row in the
resulting active set. UPDATE is a DML command.

DELETE Initiates a search as in SELECT, then removes the
resulting active set from the table. DELETE is a
DML command.

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-6 ni.com

A typical SQL statement might read as follows:

SELECT product, lot FROM prodstats WHERE lot=R43E2

The interpretation of this statement is to retrieve the columns product and
lot from the prodstats table, including only those rows where the value
contained in the lot column equals R43E2. This query creates a one-row,
two-column active set as shown in Table 2-3.

SQL Dialects
Several database publishers use their own SQL dialects, in their products.
These dialects usually consist of extensions to the standard SQL commands
that perform higher-level or database-specific functions. Conversely,
certain accessible databases do not directly support standard SQL
functions. Differences are most noticeable when using the CREATE
TABLE and ALTER TABLE commands. Most of the databases use their
own particular column type keywords. Many of the databases have
different syntax for date-and-time formats. ODBC-compliant SQL Toolkit
software helps to minimize the effects of these SQL variants. Refer to
Appendix A, SQL Quick-Reference, for information about particular
databases.

Universal Data Access, OLE DB, and ADO
The ODBC standards design was to access only relational databases.
Microsoft realized this as a limitation and developed a platform called
Universal Data Access (UDA) where applications can exchange relational
or non-relational data across intranets or the Internet, essentially
connecting any type of data with any type of application. OLE DB is the
Microsoft system-level programming interface to diverse sources of data.
ADO is the application-level programming interface.

The Microsoft Data Access Components (MDAC) are the practical
implementation of Microsoft’s UDA strategy. The LabVIEW Database
Connectivity Toolset includes MDAC 2.5 as part of its installation.
MDAC 2.5 includes the ODBC, OLE DB, and ADO components. MDAC
also installs several data providers you can use to open a connection to a
specific data source such as an MS Access database.

Table 2-3. Example Query Results

widget R43E2

Chapter 2 Getting Started with the Database Connectivity Toolset

© National Instruments Corporation 2-7 Database Connectivity Toolset User Manual

OLE DB Standard
OLE DB specifies a set of Microsoft Component Object Model (COM)
interfaces that support various database management system services.
These interfaces enable you to create software components that comprise
the UDA platform. OLE DB is a C++ API that allows for lower-level
database access from a C++ compiler. The following are three general
types of COM components for OLE DB:

• OLE DB Data Providers—Data source-specific software layers that
are responsible for accessing and exposing data.

• OLE DB Consumers—Data-centric applications, components, or tools
that use data through the OLE DB interfaces. Using networking terms,
OLE DB consumers are the clients, and the OLE DB data provider is
the server.

• OLE DB Service Providers—Optional components that implement
standard services to extend the functionality of data providers.
Examples of these services include cursor engines, query processors,
and data conversion engines.

As mentioned previously, the LabVIEW Database Connectivity Toolset
installs MDAC 2.5 if it is not already installed on your machine.
Windows 2000 and Windows ME contain MDAC as part of the operating
system. MDAC includes several OLE DB providers for various data
sources. All data access in the LabVIEW Database Connectivity Toolset
occurs through an OLE DB provider. If you do not specify a provider, the
toolkit automatically uses the default ODBC provider described in the
following section. Microsoft provides some relational data providers as part
of the MDAC installation.

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-8 ni.com

OLE DB Provider for ODBC
The OLE DB provider for ODBC was developed and released with
MDAC 1.0 in 1996. Because ODBC is the best way to communicate
between an application and any relational database, OLE DB provider for
ODBC acts as a conversion layer between OLE DB interfaces and ODBC.
The hierarchy of data interface layers between ADO and a database using
the OLE DB provider for ODBC appears in Figure 2-3.

Figure 2-3. Communication Path between ADO and a Database
Using the OLE DB Provider for ODBC

With MDAC 2.0, released in 1998, Microsoft provided an OLE DB
provider for SQL Server, Jet, and Oracle database systems. Native
providers are much faster than using the OLE DB Provider for ODBC,
because they eliminate the need for both the OLE DB to ODBC conversion
process and for the ODBC driver and Driver Manager layers. For this
reason, you should always use the native OLE DB data provider for the data
source you are accessing if it is available.

OLE DB Provider for ODBC

OLE DB Services (optional)

ADO (OLE DB Consumer)

ODBC Driver Manager

SQL Server
ODBC Driver

DB Specific
ODBC Driver

Oracle

SQL Server Oracle
ODBC Driver

Any ODBC
Database

ODBC API

Chapter 2 Getting Started with the Database Connectivity Toolset

© National Instruments Corporation 2-9 Database Connectivity Toolset User Manual

OLE DB Provider for SQL Server
The OLE DB provider for SQL Server, shown in Figure 2-4, exposes data
stored in Microsoft SQL Server 6.5 or later databases.

Figure 2-4. Communication Path between ADO and an SQL Server Database
Using the Native OLE DB Provider

SQL Server
Database

OLE DB Provider for SQL Server

OLE DB Services (optional)

ADO (OLE DB Consumer)

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-10 ni.com

OLE DB Provider for Jet
The OLE DB Provider for Jet uses the Microsoft Jet database engine to
expose data stored in Microsoft Access databases (.mdb) and numerous
Indexed Sequential Access Method (ISAM) databases, including Paradox,
dBase, Btrieve, Excel, and FoxPro. The Jet database engine is included
with Microsoft Access and is the underlying DBMS of Microsoft Access.
Visual Basic for Applications is the host language for the Jet DBMS.

Figure 2-5. Communication Path between ADO and an Access Database
Using the Native OLE DB Provider

Jet 1.1 shipped with an interface for using the database engine
programmatically. The Jet interface was Data Access Objects (DAO) 1.1.
DAO is a COM component that gives custom applications the power and
flexibility of the Jet database engine in a simple object model. DAO is also
language-independent, meaning that any programming language or toolset
that supported OLE Automation can use DAO and the Jet database engine.

Visual Basic 3.0 also shipped with the Jet data control, which allowed
applications to be bound quickly to databases through the Jet database
engine. Today the Jet database engine supports many more features and
DAO exposes all Jet functionality. DAO has become one of the most widely
used and accepted data access technologies by all types of developers.
This is partly due to the fact that DAO builds on the success of ODBC.

OLE DB Provider for Jet

OLE DB Services (optional)

ADO (OLE DB Consumer)

Jet Database Engine

MS Access
Database

ISAM
Databases

Chapter 2 Getting Started with the Database Connectivity Toolset

© National Instruments Corporation 2-11 Database Connectivity Toolset User Manual

Despite the availability of the OLE DB Provider for Jet and comparable
benchmarks, many developers still use DAO because some of the
functionality of DAO, such as data definition and security, is still not
available in the OLE DB Provider for Jet.

Note Although DAO and ADO are both APIs for communicating with and manipulating
data in databases, they are separate and different. DAO is specifically used with the Jet
database engine, but ADO is part of Microsoft’s UDA strategy for sharing data between
any applications and over the Internet. Refer to the ActiveX Data Objects (ADO) section
later in this chapter for more information about ADO.

OLE DB Provider for Oracle
The OLE DB provider for Oracle exposes OLE DB interfaces for retrieving
and manipulating data stored in Oracle 7.3.3 or later databases. The OLE
DB provider for Oracle is implemented as a layer on top of the Oracle
Native API, the Oracle Call Interface (OCI). Oracle also provides an OLE
DB provider that is slightly newer than the Microsoft version. If you
experience any problems, use Oracle’s provider available on their web site
at http://technet.oracle.com/software/tech/ nt/ole_db/

Figure 2-6. Communication Path between ADO and an Oracle Database
Using the Native OLE DB Provider

OLE DB Provider for Oracle

OLE DB Services (optional)

ADO (OLE DB Consumer)

Oracle Call Interface (OCI)

Oracle
Database

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-12 ni.com

Microsoft also provides a number of OLE DB data providers for
non-relational data sources including the following:

• OLE DB provider for AS/400

• OLE DB provider for Index Server

• OLE DB provider for Internet Publishing

• OLE DB provider for Active Directory

• OLE DB provider for Microsoft Exchange

• OLE DB provider for OLAP (Online Analytical Processing)

Two third party vendors, Merant, http://www.merant.com, and ISG
Navigator, http://www.isgnavigator.com, also supply OLE DB
providers.

If you need access to a data source that does not provide an OLE DB data
provider and does not support ODBC, you can create custom OLE DB data
providers that can expose any data source. For example, you can develop
custom OLE DB data providers for data sources such as the following:

• Personal address book

• Windows registry

• Scheduled tasks

• Shared memory

An advantage of UDA is the ability to develop custom OLE DB data
providers because it enables standardized access to data sources beyond
Microsoft products and the popular relational database systems. Refer to
Appendix B, References, for more information about writing your own
OLE DB providers.

ActiveX Data Objects (ADO)
As mentioned previously, OLE DB is a C++ system-level programming
interface, and ADO is the application-level programming interface to
diverse sources of data. ADO is an ActiveX wrapper to OLE DB so that any
programming language or tool that supports COM can use the OLE DB
technology through ADO. The LabVIEW Database Connectivity Toolset
consists of ADO calls made through Invoke and Property Nodes.

You do not need to know the details about ADO or the other standards
mentioned in this chapter in order to use the LabVIEW Database
Connectivity Toolset. However, knowledge about the history and
architecture of ADO helps you use these tools more efficiently. The object

Chapter 2 Getting Started with the Database Connectivity Toolset

© National Instruments Corporation 2-13 Database Connectivity Toolset User Manual

model for ADO is made up of three main COM objects, Connection,
Command, and Recordset, as shown in Figure 2-7. According to the ADO
standard, each of these top-level objects can exist independently without
the others. However, the Database Connectivity Toolset has a hierarchical
structure where the Connection object is necessary in order to use a
Command or Recordset object.

Figure 2-7. ADO Object Hierarchy

Table 2-4 describes each of the components of the ADO object model.

Table 2-4. ADO Object Model Components

Component Description

Connection This object represents an open connection to an
OLE DB data source. It contains methods for
setting timeouts and maintaining information about
the connection.

Command The two major uses for a command object are to
execute statements against an OLE DB connection
and to retrieve a recordset based on an SQL query
or stored procedure.

Recordset This object represents a set of records and is used
to manipulate data in a data source. You also can
control cursors and the locking types for recordsets.

Stream

Connection

Errors Properites

Command

Properties Parameters

Recordset

Fields Properites

Record

Fields

Chapter 2 Getting Started with the Database Connectivity Toolset

Database Connectivity Toolset User Manual 2-14 ni.com

The LabVIEW Database Connectivity Toolset is based upon version 2.5 of
ADO. This version of ADO, part of the MDAC 2.5 package, automatically
installs with the toolkit on platforms where an older version or no version
of MDAC exists.

Note ADO is a Windows-only technology. However, you can run the database servers on
other platforms as long as an OLE DB provider or an ODBC driver exists for the database.
For example, if you use an Oracle database on a UNIX machine connected to a network,
you can use the LabVIEW Database Connectivity Toolset VIs on a Windows machine on
that network to access the database through the OLE DB provider for Oracle.

Record This object represents a single row in a recordset.
The Record, Stream, and Recordset objects work
together to help you navigate through data.

Stream This object represents binary data, usually stored in
Unicode.

Property This object is the building block of the other ADO
objects. The properties collection contains only the
properties added to the object by the data provider
and does not contain the intrinsic properties of the
object.

Error This object represents a single error.

Parameter This object represents a single parameter for a
Command object. Generally, parameters are used
with any type of parameterized commands where
an action is defined once but can have results
changed depending on the variable values.

Field This object represents a single column of data in a
recordset. The fields collection is the default
property of the Recordset object, so you do not
often see its name in the code.

Table 2-4. ADO Object Model Components (Continued)

Component Description

© National Instruments Corporation 3-1 Database Connectivity Toolset User Manual

3
Using the Database Connectivity
Toolset

This chapter describes how to use the Database Connectivity Toolset to
communicate with databases. The first section describes the different
methods of connecting to a database. The next section describes the
high-level VIs you can use to create tables, delete tables, insert data into
tables, or select data from tables in a database. Next is a description of the
data types supported by the Database Connectivity Toolset. The last section
describes how you can use the Database Connectivity Toolset examples,
even when you do not have a database installed.

Connecting to a Database
Before you can access data in a table or execute SQL statements, you must
establish a connection to a database. The LabVIEW Database Connectivity
Toolset supports multiple simultaneous connections to a single database or
to multiple databases. Use the DB Tools Open Connection VI to establish
the connection to a database.

Connecting to a database is where most errors occur because each database
management system (DBMS) uses different parameters for the connection
and different levels of security. The different standards use different
methods of connecting to databases. For example, ODBC uses Data Source
Name (DSN) for the connection and ADO uses Universal Data Links
(UDL) for the connection. The DB Tools Open Connection VI supports all
the various methods for connecting to a database as described in this
section.

DSNs and Data Source Types
A DSN is not only the name of the data source, or database, you are
connecting to, it also contains information about the ODBC driver and
other connection attributes including paths, security information, and
read-only status of the database. Two main types of DSNs exist, machine
data sources and file data sources. Machine data sources are in the system
registry and apply to all users of the computer system or to a single user,

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-2 ni.com

system DSNs and user DSNs respectively. A file DSN is a text file with the
extension *.dsn and is accessible to anyone with access to that file. File
DSNs are not restricted to a single user or computer system. All DSNs are
created and configured using the ODBC Administrator.

ODBC Administrator
You use the ODBC Administrator icon in your Control Panel to register
and configure drivers to make them available as data sources for your
applications. Your system saves all changes you make within the ODBC
Administrator. When you double-click the ODBC Administrator icon in
the Control Panel, Administrative Tools»Data Sources (ODBC) in
Windows NT/2000, the ODBC Data Source Administrator dialog box
appears as shown in Figure 3-1.

Figure 3-1. Data Sources Dialog Box

The ODBC Data Source Administrator dialog box lists all the registered
ODBC data sources. You use the tabs to specify the type of DSN, User,
System, or File. You then can use the Add or Configure buttons to display
a driver-specific dialog box where you can configure a new or an existing

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-3 Database Connectivity Toolset User Manual

data source. The system then saves the configuration for the data source in
the registry or to a file. When you create a new DSN, the Create New Data
Source dialog box contains a list of all the ODBC drivers for your system,
as shown in Figure 3-2.

Figure 3-2. Available ODBC Drivers

The LabVIEW Database Connectivity Toolset does not provide custom
ODBC drivers but installs MDAC. Microsoft provides several ODBC
drivers with MDAC. Database system vendors and third-party developers
also offer large selections of ODBC drivers. The LabVIEW Database
Connectivity Toolset complies with the ODBC standard, so you can use
it with any ODBC-compliant database drivers. Refer to your vendor
documentation for information about registering your specific database
drivers with the ODBC Administrator.

After you select a particular driver, a second dialog box appears that
contains specific settings for that driver. ODBC drivers for databases such
as SQL Server and Oracle contain settings and additional dialog boxes for
configuring items such as server information, user identification, and

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-4 ni.com

passwords. Figure 3-3 shows the ODBC Access Driver Setup dialog box
for the system DSN named LabVIEW that is used for the Database
Connectivity Toolset examples.

Figure 3-3. ODBC Access Driver Setup Dialog Box

Examples of Using DSNs
This section shows several examples of using the DB Tools Open
Connection VI to connect to a various databases.

Figure 3-4 shows how you use a string to specify a System DSN, or a User
DSN, called MS Access to open a connection to a specific database.

Figure 3-4. Connecting to an Access Database Using a System DSN

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-5 Database Connectivity Toolset User Manual

Figure 3-5 shows how you use a path to specify a File DSN named
access.dsn to open a connection to the database. Notice that the
connection information input is polymorphic and accepts either a string
or path for the DSN.

Figure 3-5. Connecting to an Access Database Using a File DSN

Figure 3-6 shows a connection made to an Oracle database using a System
DSN. Notice that the user ID and password values are used. Some DBMS
require these parameters to be set in order to connect to a database. You
should be familiar with your DBMS and how to specify the connection
parameters.

Figure 3-6. Connecting to an Oracle Database Using a System DSN

As shown in the previous examples, connecting to a database using the DB
Tools Open Connection VI requires only a string or path value specifying
the DSN along with optional user ID and password strings depending upon
the DBMS. Therefore, the majority of problems in defining a connection
occur when you create the DSN. Some ODBC drivers have an option to test
the connection. Test the connection between the DSN and the database
before you try to do anything with the Database Connectivity Toolset.

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-6 ni.com

Figure 3-7 shows where you can test the connection using the Test Data
Source button at the end of the process for creating a DSN for a SQL
Server 7 database.

Figure 3-7. Testing a Database Connection using SQL Server

Creating a DSN is the way to connect to a database using ODBC. ADO and
OLE DB use a method called a Universal Data Link (UDL).

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-7 Database Connectivity Toolset User Manual

UDLs
A UDL is similar to a DSN because it also describes more than just the data
source. A UDL contains information about what OLE DB provider is used
(the default is the Microsoft OLE DB provider for ODBC drivers), server
information, user ID and password (if required), default database, and other
related information. You can create a UDL in one of the following three
ways:

• Use the prompt? input from the DB Tools Open Connection VI as
shown in Figure 3-8.

Figure 3-8. Using the Prompt to Create a UDL

The prompt? input opens the Data Link Properties dialog box when
the DB Tools Open Connection VI runs. You can select the appropriate
options to make the database connection.

• Select Tools»Create Data Link in LabVIEW to open the Data Link
Properties dialog box and save a UDL file to the LabVIEW/
database/data links directory.

Note The Database Connectivity Toolset installer creates a directory called data links
inside the LabVIEW/database directory. Save all UDL files and File DSNs to this
directory so you can easily find them.

• Right-click in the Windows environment, the desktop or in any open
directory, and select New»Microsoft Data Link from the shortcut
menu shown in Figure 3-9. You must have the file extensions
displaying in the Tools»Folder Options»View tab for this method
to work.

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-8 ni.com

Figure 3-9. Using Windows to Create a UDL

The UDL is saved as a file (*.udl) in the location where you
originally right-clicked. You can double-click the UDL file to open the
Data Link Properties dialog box to configure the UDL settings.

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-9 Database Connectivity Toolset User Manual

Configuring a UDL
Any method of creating a UDL invokes the Data Link Properties dialog
box. Select a data provider from the Provider tab. Refer to the Universal
Data Access, OLE DB, and ADO section of Chapter 2, Getting Started with
the Database Connectivity Toolset, to determine which provider to use with
your database. Figure 3-10 shows the default provider of Microsoft OLE
DB provider for ODBC drivers.

Figure 3-10. Selecting the Provider for a UDL

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-10 ni.com

After you select a data provider from the list on the Provider tab, you then
can configure the specifics of the database connection on the Connection
tab. The options shown on the Connection tab are different depending upon
which provider you choose. For example, the Connection tab for the
ODBC provider contains a selection for a DSN or connection string along
with user name and password information. Figure 3-11 shows the
Connection tab options for using the Jet 4.0 provider for Microsoft Access.

Figure 3-11. Configuring the Connection for a UDL

Click the Test Connection button to test the database connection after you
configure the various properties. Make sure the connection test passes
before you click the OK button to exit.

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-11 Database Connectivity Toolset User Manual

Example Using a UDL
Use a path control or constant to specify the path to the UDL file unless you
wire a TRUE to the prompt? input on the DB Tools Open Connection VI.
Figure 3-12 shows a path constant specifying the UDL for an access
database.

Figure 3-12. Connecting to an Access Database Using a UDL

Although you might have created the DSN or UDL correctly, you still
might not be able to connect to a specific database because of situations
beyond your control. For example, the requested server might be down,
the network might be down, all of the server connections might be full and
no other users can connect, the maximum number of user licenses might
have been reached, you do not have permission to access the specified
database, the specified DSN does not exist (either you are on a different
machine or the specified DSN was deleted), or the selected data provider is
the wrong one for the database. If you are get errors from the DB Tools
Open Connection VI, you can open the UDL file manually and click the
Test Connection button to verify that you have the correct settings and that
you have access to the database. If the Test Connection fails, you cannot
connect to that database with the LabVIEW Database Connectivity Toolset.
Contact your Database Administrator (DBA) for help.

High-Level Database VIs
This section describes how you can use the high-level Database
Connectivity Toolset VIs and function to write data to or read data from
databases and to create and delete tables.

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-12 ni.com

Writing Data to a Database
Writing data to a database with the Database Connectivity Toolset is
similar to writing data to a file. You open a connection, insert the data, and
you close the connection when you are finished. Figures 3-13 and 3-14
show the panel and diagram of a VI that writes test information into a
database table. The connection information is a path to the UDL called
test.udl and the table name is testdata.

Figure 3-13. Front Panel that Writes Data to a Database Table

Figure 3-14. Block Diagram that Writes Data to a Database Table

Figure 3-17 uses three Database Connectivity Toolset VIs, DB Tools Open
Connection, DB Tools Insert Data, and DB Tools Close Connection. The
create table? input to the DB Tools Insert Data VI is set to TRUE to create
the specified table if it does not already exist. If this table does exist, then
the data is appended to the existing table. The DB Tools Insert Data VI
accepts any type for the data input. If the input type is a cluster, each cluster
element is placed into a different field. The LabVIEW data types are
converted to the appropriate database data types. Refer to Appendix C,

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-13 Database Connectivity Toolset User Manual

Supported Data Types, for more information about data types. Figure 3-15
shows the testdata table as it appears in Microsoft Access. Note that the
front panel and block diagram previously shown do not specify the type of
database to use. That configuration occurs when the test.udl is created.

Figure 3-15. Database Table Displayed in Access

Notice that the column names are not specified in the VI, so the table uses
default column names. The columns input on the DB Tools Insert Data VI
is an array of strings where each element is the name of a field.

Reading Data from a Database
You can read data from a database table using a similar method to writing
data. You open a connection to the database, select the data from a table,
and then close the connection. Figures 3-16 and 3-17 show how you can
read the data back from the testdata table used in the previous example.

Figure 3-16. Front Panel that Reads Data from a Database Table

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-14 ni.com

Figure 3-17. VI Block Diagram that Reads Data from a Database Table

Notice in Figure 3-16 and Figure 3-17 that the database data returns as a
two dimensional array of variants. ADO is based on ActiveX that defines
variants as its data types. Variants work well in languages such as Visual
Basic that are not strongly typed. Because LabVIEW is strongly typed,
you must use the Database Variant To Data function located on the
Functions»Database palette to convert the variant data to a LabVIEW data
type before you can display the data in standard indicators such as graphs,
charts, and LEDs.

Figures 3-18 and 3-19 show the front panel and block diagram for a VI
that reads all the data from a database table and then converts the data to
appropriate data types in LabVIEW. Notice that the raw data array (fourth
column) that is not displayed properly in either Access or the variant is now
displayed in a waveform graph.

Figure 3-18. Front Panel that Reads and Converts Data from a Database Table

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-15 Database Connectivity Toolset User Manual

Figure 3-19. Block Diagram that Reads and Converts Data from a Database Table

You can read data from more than one table in a database using the table
input to the DB Tools Select Data VI. Figure 3-20 shows how you can use
a comma-delimited string to specify multiple table names. The data array
includes all rows and columns from both tables in the order they appear in
the table string.

Figure 3-20. Specifying Multiple Database Tables for Reading Data

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-16 ni.com

Reading Specific Data from a Table
If you are reading data from a large table or set of tables, it might take
several seconds to return all the data. There is no limit other than your
computer resources, memory and speed, to the size of the database table
you can read. Read only the necessary fields or perform an SQL query to
limit the amount of information to read into LabVIEW at one time.
Figure 3-21 shows how you can limit the returned data by using the
columns string array to specify which columns to read.

Figure 3-21. Specifying Column Names for Reading Data

In Figure 3-21, only the testid and pass fields are returned from a table
named testdata. You can limit the returned data further by specifying
conditions using the optional clause string. Figure 3-22 shows how you
can limit the results from the previous example by returning the testid
and testdate fields for the records where the pass field equals TRUE.

Figure 3-22. Specifying Conditions for Reading Data

The statement where pass=’true’ is part of an SQL query. Refer to
Appendix A, SQL Quick-Reference, or one of the SQL references listed in
Appendix B, References, for more information about how to create an SQL
query.

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-17 Database Connectivity Toolset User Manual

Note If you receive an error while using the DB Tools Select Data VI, either a specified
field in the columns string array does not exist in the table or that column name contains
characters such as space, -, \, /, or ?. Do not use these characters when naming tables in
a database. However, if an existing database contains such characters, enclosing the
column name in double quotes often solves the problem.

Creating and Deleting Tables
Use the DB Tools Create Table and DB Tools Drop Table VIs to create or
delete tables in a database. Use the DB Tools Open Connection VI to
connect to a database and then use the DB Tools Create Table VI or DB
Tools Drop Table VI to perform the desired operation. Use the DB Tools
Close Connection VI to end communication with the database. Figure 3-23
shows how you can create a new table and Figure 3-24 shows how to delete
a table.

Figure 3-23. Block Diagram that Creates a Database Table

The DB Tools Create Table is a subVI in the DB Tools Insert Data VI to
create the table if specified and it does not already exist. However, use the
DB Tools Create Table at the highest level if you want more control over
the database fields such as specifying column names, data types, and
whether to allow NULL values. The size field only affects the string data
type. If you use the default size of 0 for a string, then the maximum size for
a string is defined by the specified provider.

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-18 ni.com

Figure 3-24 shows how you use the DB Tools Drop Table VI to delete a
table from a database.

Figure 3-24. Block Diagram that Deletes a Database Table

Supported Data Types
LabVIEW, ADO, and each DBMS support a different set of data types.
Therefore, the Database Connectivity Toolset maps the various LabVIEW
data types to data types supported by some of the common DBMS.
Table 3-1 shows which native database data types the Database
Connectivity Toolset supports.

All LabVIEW 6.0 data types are supported but not necessarily in their
native form. For example, bytes (U8 and I8) and words (U16 and I16) can
be treated as longs (I32). The binary data type encompasses any piece of
LabVIEW data that cannot be represented natively in the database such as
waveform, cluster, or array data. Refer to Appendix C, Supported Data
Types, for more information about data types.

Reference numbers (refnums) are the only LabVIEW data types not
supported by the Database Connectivity Toolset because refnums are
ephemeral constructs whose values are meaningless after usage. If you do
want to save a refnum to a database table, you must first type cast the
refnum to an integer and then write the integer to the table. The exceptions
being DAQ, IVI, and VISA Channel refnums that are inserted as strings

Table 3-1. Database Connectivity Toolset Data Types

Database Toolset Data Type SQL Data Type

String Char, VarChar

Long Integer

Single Real

Double Double Precision

Date/Time Date/Time

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-19 Database Connectivity Toolset User Manual

into the database. These refnums are converted back into DAQ, IVI, or
VISA Channel refnums using the Database Variant To Data function.

Working with Date/Time
Date/time is an important data type for databases. However, date and
time in LabVIEW are represented as strings, and there is no way to
differentiate a string type from date/time type. You must format date and
time differently to insert date/time information into a particular database.
You must use the DB Tools Format Datetime Str VI located on the
Functions»Database»Utilities palette whenever you insert date/time
strings into a database. The DB Tools Format Datetime Str VI formats the
string into the correct format for SQL. It places a header at the beginning
of the string that is later decoded in other VIs to determine that the string is
a date/time string. The main problem with date/time is that no uniformity
exists and each database supports a different format. In other words, when
you select date/time values from a database, they might come back in a
different form depending on the DBMS.

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-20 ni.com

Handling NULL Values
Databases have NULL fields that are empty fields containing no data.
LabVIEW has no concept of NULL, so NULLs are treated as default data.
This means that a NULL is whatever the default value is such as an empty
string, a zero-value numeric, or a FALSE boolean. You cannot easily
differentiate between a 0.00 value in a numeric from one that is NULL.
Figures 3-25 and 3-26 show how NULL values are represented in different
formats.

Figure 3-25. Front Panel Showing How NULLs Are Handled

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-21 Database Connectivity Toolset User Manual

Figure 3-26. Block Diagram Showing How NULLs Are Handled

When you convert the NULL values in the variant array into numeric
values, the NULLs become 0.00 values. However, when you convert the
variant array into strings, the NULLs become empty strings. You convert
the strings to numbers and, when the string is empty, insert a NaN (not a
number) value.

Chapter 3 Using the Database Connectivity Toolset

Database Connectivity Toolset User Manual 3-22 ni.com

Currency and Boolean Data Types
Currency and Boolean (Yes/No in Microsoft Access) are common
data types and are not directly supported by the LabVIEW Database
Connectivity Toolset because these data types are not available in other
DBMS such as Oracle. However, you can write data to and read data from
these field types with the Database Connectivity Toolset VIs using strings.
Figure 3-27 shows how you can convert the Boolean and currency data to
strings and write the information to the appropriate fields in an Access
table.

Figure 3-27. Writing Boolean and Currency Data

When you read Boolean data from a table, the data is returned as TRUE or
FALSE strings. Currency data is read from a table as a number without the
$ currency symbol. Avoid using data types that are not supported by the
Database Connectivity Toolset.

Using the Database Connectivity Toolset Examples
The Database Connectivity Toolset includes several examples. These
examples use a UDL called LabVIEW.udl to link to a Microsoft Access
database named LabVIEW.mdb. Refer to the Database Connectivity
Toolset Help for more information about the examples.

Using the Examples with Other Databases
You can use the Database Connectivity Toolset example VIs by
modifying the LabVIEW.udl file. Double-click this UDL file in the
LabVIEW/Examples directory to open the Data Link Properties window.
You then can select a different provider and set the connection properties
for your DBMS. The default values for some of the example VIs assume

Chapter 3 Using the Database Connectivity Toolset

© National Instruments Corporation 3-23 Database Connectivity Toolset User Manual

the presence of a particular table in the database to read data from or add
data to. You need to modify the example to fit the table names, column
names, and data types required.

Using the Examples without a Database
You do not need to have MS Access or any other database installed to use
the Database Connectivity Toolset examples. If you run the examples with
their default values, the data is read from or written to the LabVIEW.mdb
file even if you do not have Access installed. If you want to create a new
database file to write data to and read data from, you can copy and rename
the LabVIEW.mdb file and use the DB Tools Drop Table VI to remove the
existing tables. You then can use the DB Tools Create Table VI to create
new tables specific to your application.

© National Instruments Corporation 4-1 Database Connectivity Toolset User Manual

4
Database Connectivity Toolset
Utilities

This chapter describes how to use the VIs located on the Functions»
Database»Utility palette of the Database Connectivity Toolset for various
common operations. The Utility VIs are used for a variety of operations.
This chapter only covers some of those uses. Refer to the Database
Connectivity Toolset Help for more information about using these VIs.

Getting Table and Column Information
Sometimes you must work with databases created by other users or groups,
and you are not familiar with the structure of the database. You can use the
DB Tools List Tables VI to determine what tables exist in a particular
database. The DB Tools List Columns VI returns an array of column or
field names in a table and also returns information about the data type and
size of each field. Figures 4-1 and 4-2 show how you can use these Utility
VIs to get information about a database.

Figure 4-1. Front Panel Showing How to Get Database Information

Chapter 4 Database Connectivity Toolset Utilities

Database Connectivity Toolset User Manual 4-2 ni.com

Figure 4-2. Block Diagram Showing How to Get Database Information

If you want to get information about all the fields in all the tables, you can
place the DB Tools List Columns VI into a For Loop instead of using the
Index Array function. Refer to Chapter 3, Using the Database Connectivity
Toolset, and Appendix C, Supported Data Types, for more information
about how the Database Connectivity Toolset maps the data types from
DBMS to LabVIEW data types.

Getting and Setting Database Properties
You can read or set various database properties using the DB Tools
Get Properties and DB Tools Set Properties VIs. Both of these VIs are
polymorphic and can accept different types of reference. The exact
properties you can set or read are based on what type of reference you
wire to the reference input. Refer to Chapter 2, Getting Started with the
Database Connectivity Toolset, for more information about the
Connection, Command, and Recordset object classes for ADO. The
Database Connectivity Toolset supports these three object classes and has
a fourth called Command-Recordset to handle the close relationship
between the ADO Recordset and Command objects.

Chapter 4 Database Connectivity Toolset Utilities

© National Instruments Corporation 4-3 Database Connectivity Toolset User Manual

ADO Reference Classes
Table 4-1 describes the purpose of each object class as it relates to the
Database Connectivity Toolset.

Be careful what references you wire from one VI to the next. You might
obtain unexpected results when you wire a different type of reference than
expected to the input of a VI. Refer to the Database Connectivity Toolset
Help for more information about what reference types are used for VI
inputs and outputs.

Table 4-1. Database Connectivity Toolset Object Classes

Object Class Description

Connection Use this class to define the database connection parameters, such as the
OLE DB provider used, the connection string used, and the default
database used. After you create a Connection reference, delete it with
the DB Tools Free Object VI. Refer to Chapter 5, Advanced Database
Operations, for more information about Connection references.

Command Use this class to execute commands and capture parameters returned
from stored procedures. Create a Command reference by first creating a
Connection reference and then calling the DB Tools Create
Parameterized Query VI. You can get or set properties related to the
command or the parameters associated with the command. After you
create a Command reference, delete it with the DB Tools Free Object VI.
Refer to Chapter 5, Advanced Database Operations, for more
information about Connection references.

Recordset Use this class to manipulate data. Create a Recordset reference by
creating a Connection reference and then calling DB Tools Execute
Query VI. You can get or set properties related to the column
information, the number of records available, the beginning or end of file
markers, and the type of cursor used. After you create a Recordset
reference, delete it with the DB Tools Free Object VI. Refer to
Chapter 5, Advanced Database Operations, for more information.

Command-Recordset Use this class for situations where commands and recordsets are used
together, such as SQL queries. Create a Command-Recordset reference
by first creating Connection and Command references and then calling
DB Tools Execute Query VI. You can get or set all the properties
available to the Command and Recordset references. After you create a
Command-Recordset reference, delete it with the DB Tools Free Object
VI. Refer to Chapter 5, Advanced Database Operations, for more
information about Connection references.

Chapter 4 Database Connectivity Toolset Utilities

Database Connectivity Toolset User Manual 4-4 ni.com

Specific Properties
The list of available properties changes not only with the reference type but
also with the data provider. Each OLE DB data provider supports different
properties for each of the ADO class types. Also, OLE DB developers are
not required to implement properties in the same way. If you use a
particular property with one database, that same property might not work
the same for another database. Some properties are read-only and you
cannot set them. Refer to the Database Connectivity Toolset Help for more
information about specific property values.

Formatting Date and Time
No standard format exists for date and time although most databases
support a specific data type for date/time. The DB Tools Format Datetime
Str VI formats a LabVIEW date/time string so that the other Database
Connectivity Toolset VIs recognize it as a separate data type and inserts
that data type into the database properly. Figure 4-3 shows the DB Tools
Format Datetime Str VI used to send a time stamp to the second field of the
testdata table.

Figure 4-3. Writing Date and Time to a Database

The first version of this VI, shown in Figure 3-14, Block Diagram that
Writes Data to a Database Table, writes the date and time to the database
as a text string because LabVIEW recognizes date and time in this format.
The Datasheet View in Microsoft Access shows the same information as
shown in Figure 3-15, Database Table Displayed in Access. However, the
Design View for the table in Figure 3-15 shows Field col1 as a text data

Chapter 4 Database Connectivity Toolset Utilities

© National Instruments Corporation 4-5 Database Connectivity Toolset User Manual

type. Figure 4-4 shows the data type for the table created by the diagram in
Figure 4-3 as Date/Time.

Figure 4-4. Table Showing How to Get Database Information

You read this data back into LabVIEW exactly the same way as before.
You treat the date/time data as a string.

Performing Database Transactions
Protecting the integrity of a database is often difficult. Multiple users can
have access to a single database at the same time and each of them can
change the data. You can use the DB Tools Database Transaction VI as
shown in Figure 4-5 to specify when to actually perform, or commit, a
database operation and when to return to the previous state of, or rollback,
the database operation.

Figure 4-5. Block Diagram of the Transaction Example

The simple example shown in Figure 4-5 demonstrates how you can
open a database connection, start a transaction, create a table, prompt the
user to either commit or rollback the transaction, and close the database
connection. If the user selects to commit the changes, the table is created as
specified by the column information cluster. If the user selects to rollback
the changes, the table is not created. You can use a similar method to protect
the data in your database tables. You can group operations that belong

Chapter 4 Database Connectivity Toolset Utilities

Database Connectivity Toolset User Manual 4-6 ni.com

together into a single transaction and commit the transaction when you are
finished or rollback the transaction if an error occurs. You also can use
locking to determine who has access to a database during a transaction.

Locking Transactions and Setting Isolation Levels
Locking is an important activity in multi-user database systems where
different users have access to the same data at the same time. Without data
locking, more than one user can modify the same record at the same time,
possibly causing data inconsistencies. Locking provides a way to have
concurrent database access while minimizing the various problems it can
cause.

Isolation levels represent different locking strategies. The higher the
isolation level, the more complex the locking strategy is and the better it is
at preventing data inconsistencies. The following data inconsistencies are
examples of what different isolation levels try to prevent:

• Dirty Reads—User 1 modifies data while user 2 uses that same data
before user 1 can commit the changes. User 2, therefore, uses incorrect
data.

• Non-Repeatable Reads—User 1 reads records while user 2 modifies
records. User 1 rereads the records and finds that a record has changed
or been deleted.

• Phantom Reads—User 1 reads records while user 2 adds records.
User 1 rereads the records and finds additional records.

The DB Tools Database Transaction VI, as shown in Figure 4-6, contains
an optional input for setting the isolation level used for the transaction. You
need to set this value only if other transactions might be pending at the same
time.

Figure 4-6. Block Diagram of the Transaction Example

Chapter 4 Database Connectivity Toolset Utilities

© National Instruments Corporation 4-7 Database Connectivity Toolset User Manual

At the lowest level of isolation, all the problems mentioned previously can
occur. At the highest level of isolation, none of these problems can occur.
Different databases support the following different isolation levels:

• Chaos (lowest level)—Transactions are not safe from each other.
One transaction might overwrite another.

• Read Uncommitted—Locks are obtained on modifications only and
held to the end of the transaction. Reading does not involve any
locking. Dirty reads, non-repeatable reads, and phantom reads are all
possible.

• Read Committed—Locks are obtained on reading and modification,
but locks are released after reading and held until the end of the
transaction for modifications. This transaction cannot see changes
made by other transactions until they are committed. Dirty reads are
not possible, but non-repeatable reads and phantom reads are possible.

• Repeatable Read—Locks are obtained on reading and modifications.
Locks are held until the end of the transaction for both reading and
modifying records. Locks on non-modified access are released after
reading. You do not see any changes in records without re-querying the
database. Dirty reads and non-repeatable reads are not possible, but
phantom reads are possible.

• Serializable (highest level)—All read or modified data is locked until
the end of the transaction. The transaction occurs in complete
isolation. Dirty reads, non-repeatable reads, and phantom reads are not
possible.

When you choose a higher isolation level, you improve the locking strategy,
but you will have less user concurrency. The presented data might not be
the most current data.

Chapter 4 Database Connectivity Toolset Utilities

Database Connectivity Toolset User Manual 4-8 ni.com

Writing and Reading Data Files
You can use the File I/O functions and VIs to write the database data to a
file just as you do with any other data in LabVIEW. You also can use the
DB Tools Save Recordset To File VI and DB Tools Load Recordset From
File VI to write the database data to file. Rowset Persistence describes
writing database records to file. The data is sent to the file and also the
structure and properties of the database recordset. Figure 4-7 shows how
you can write recordset data to a file.

Figure 4-7. Writing Data to File

The DB Tools Save Recordset To File VI requires a recordset reference
input, so you must use the DB Tools Execute Query VI to generate a
recordset reference. This VI executes an SQL query. If you put a table name
into the SQL query input to the DB Tools Execute Query VI, it includes all
the information in that table. The recordset reference references the results,
passes them to the DB Tools Save Recordset To File VI, and writes them to
file. The DB Tools Free Object VI releases the recordset reference and the
connection to the database is closed.

The recordset data saves to file in one of the following two formats:

• Advanced Data TableGram (ADTG) format is a proprietary Microsoft
binary format. ADTG has the advantage of being a compact binary
format that results in much smaller files written faster than if you use
XML format.

• Extensible Markup Language (XML) is a text-based industry standard
specification for describing data. It is similar to HyperText Markup
Language (HTML) except XML can use an unlimited set of tags to
describe any type or structure of data. Figure 4-8 shows the resulting
XML data file written by the VI in Figure 4-7.

Chapter 4 Database Connectivity Toolset Utilities

© National Instruments Corporation 4-9 Database Connectivity Toolset User Manual

Figure 4-8. Persisted Data in XML Format

You can see the database structure and data attributes described in the XML
formatted file. Persisting data to files in the XML and ADTG formats is a
feature of ADO and OLE DB and not a special feature of the Database
Connectivity Toolset.

You can read data back into LabVIEW from one of these files using the DB
Tools Load Recordset From File VI as shown in Figure 4-9.

Figure 4-9. Persisting Data from File

The DB Tools Load Recordset From File VI returns a recordset reference
when it opens the specified file. You then can use any VI from the Database
Connectivity Toolset that accepts a recordset reference to perform
operations on that data. For the example shown is Figure 4-9, the DB Tools
Fetch Recordset Data VI returns the recordset data as a two-dimensional
array of variants. The DB Tools Free Object VI releases the recordset
reference and closes the database connection.

© National Instruments Corporation 5-1 Database Connectivity Toolset User Manual

5
Advanced Database Operations

This chapter describes how to use the Advanced VIs in the LabVIEW
Database Connectivity Toolset for advanced database operations. The
chapter describes how to execute SQL statements and fetching data using
the Database Connectivity Toolset Advanced VIs.

Use the Advanced VIs for more detailed database operations. The
Advanced VIs and the Utility VIs are the building blocks for the VIs on the
Functions»Database palette. You use the Advanced VIs when you need
more control over what is sent to or read from the database. You might need
to use SQL when you use these lower-level VIs. Refer to Appendix A, SQL
Quick-Reference, for more information about constructing SQL command
strings.

Executing SQL Statements and Fetching Data
SQL is the language used with relational databases. Common operations
include creating and deleting tables, inserting data into databases, querying
databases for particular recordsets, and manipulating data in tables. Refer
to Appendix B, References, for more information about SQL. This section
describes how you can use SQL statements with the Database Connectivity
Toolset and how you can fetch the data resulting from an SQL query.

Use the DB Tools Execute Query VI to send an SQL string to a database as
shown in Figure 5-1. You can then use any of the Fetch VIs, DB Tools Fetch
Recordset Data, DB Tools Fetch Element Data, and DB Tools Fetch Next
Recordset, to return the results of a query. The SQL string does not have to
specify a query only. You can put any SQL statement into the SQL string.
You do not need to specify any string if you are passing a Command
reference to the DB Tools Execute Query VI. The DB Tools Create
Parameterized Query VI creates a Command reference. When the DB Tools
Execute Query VI receives a Command reference input, the VI executes the
previously created SQL query.

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-2 ni.com

Figure 5-1. Fetching All the Query Results

The SQL query string shown in Figure 5-1 asks for all the records in the
testdata table where the fifth field contains a TRUE value. The DB Tools
Fetch Recordset Data VI returns a two dimensional array of variants where
all the tests passed. Refer to Chapter 3, Using the Database Connectivity
Toolset, for more information about converting the variant array to
LabVIEW data types. The DB Tools Execute Query VI creates a Recordset
reference, so you must use the DB Tools Free Object VI to release the
Recordset reference value.

Note A record is a single row of data and a recordset is a collection of records, or multiple
rows, from a database table.

The DB Tools Fetch Recordset Data VI returns all the records from a query
as shown in Figure 5-1. If you know this query will return a large amount
of data or you want to retrieve information from one record, you can use the
DB Tools Fetch Element Data as shown in Figure 5-2.

Figure 5-2. Fetching the Query Results from One Record

The DB Tools Fetch Element Data VI returns a value from a single field.
You can specify the field, or column, either by a numerical value as shown
in Figure 5-2 or by a string specifying the column name. You must also
specify the data type as the DB Tools Fetch Element Data VI uses the

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-3 Database Connectivity Toolset User Manual

Database Variant To Data function. Notice the SQL query used in
Figure 5-2. This is an example of an SQL inner join operation. An inner
join is when you combine the fields of several tables through a common
value or expression. The records in the testdata and testdata2 tables
are combined for all the tests where both tables contain failed tests.

The DB Tools Fetch Recordset Data VI returns all the records that satisfy
the SQL query and the DB Tools Fetch Element Data VI returns an element
from the first record that satisfies the query. Use the VIs described in the
Navigating through Database Records section later in this chapter to
navigate through the resulting records. Also, some SQL queries such as
stored procedures return multiple recordsets. Use the DB Tools Fetch Next
Recordset VI to read each recordset.

Note Not all databases support queries that return multiple recordsets. The inner join
statement in Figure 5-2, returns a single recordset that happens to contain the results from
multiple tables. Therefore, the recordset might contain several records, or rows, where the
columns from multiple tables have been joined.

Navigating through Database Records
Operations in a relational database act on a complete set of rows. The
recordset returned by an SQL SELECT statement consists of all the rows
that satisfy the conditions of the statement. Applications, especially
interactive and online applications, cannot always work effectively with the
entire recordset as a unit. Use cursors to allow applications that cannot
work with the entire recordset as a unit to work with one row at a time.

Note The Database Connectivity Toolset does not require you to know about cursors in
order to use them. However, the following information can help advanced users who wish
to have more control over their applications.

Using Cursors
A cursor is a placeholder that points to a specific record in a recordset.
A cursor keeps track of the position in the recordset and allows you to
perform multiple operations row by row against a recordset, with or
without returning to the original table. Every cursor uses temporary
resources to hold its data. These resources can be memory, a disk paging
file, temporary disk files, or even temporary storage in the database.
Cursors can reside in one of the following two locations:

• Client-side cursor—The temporary storage resources are located on
the client computer. In addition, the client receives the entire database

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-4 ni.com

recordset across the network. Client-side cursors lead to very quick
database operations because everything happens locally on the client
machine. However, when you work with large databases, a client-side
cursor can be extremely expensive in time and memory use because the
client machine must receive all the data from the server. Also, only the
static cursor type is supported by client-side cursors. Refer to the
Cursor Types section later in this chapter for more information about
cursor types.

• Server-side cursor—The temporary storage resources are located on
the database server machine. The server-side cursor returns only the
requested data over the network. Server-side cursors provide better
performance than the client-side cursor when you work with large
databases or in situations where excessive network traffic is a problem.
You have a choice of four different cursor types when you use a
server-side cursor.

The Database Connectivity Toolset uses only server-side cursors because
they offer more flexibility, and because they provide better performance for
large amounts of data.

Cursor Types
Although you can only use a server-side cursor with the Database
Connectivity Toolset, you do have a choice of server-side cursor types. The
type of cursor used by your application to navigate the recordset affects the
ability to move forward and backward through the rows in a recordset,
sometimes called scrollability. The ability to move forward and backward
through a recordset adds to the time and resources necessary to use the
cursor. Use the simplest cursor that provides the required data access and
only change the cursor type if you absolutely need the added functionality.
Set the cursor type using the DB Tools Execute Query VI by creating a
cursor type constant, and then selecting from the choices, as shown in
Figure 5-3.

Note Not all data providers and/or databases support all the cursor types shown in
Figure 5-3. For example, the Jet 4.0 OLE DB Provider for Microsoft Access does not
support dynamic cursors, so if you request a dynamic cursor, the provider gives you a static
cursor that is not correctly implemented.

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-5 Database Connectivity Toolset User Manual

Figure 5-3. Possible Cursor Types

Your cursor choice depends on whether you need to change or simply view
the data. If you just need to scroll through a set of results but not change
data, use a forward-only or static cursor. If you have a large result set
and need to select just a few rows, use a keyset cursor. If you want to
synchronize a result set with recent adds, changes, and deletes by all
concurrent users, use a dynamic cursor. The following cursor types are
available:

• Forward-only—This cursor is the default and permits only forward
movement through the recordset. Any changes made to the database by
other users during navigation will not be seen. Forward-only cursors
are dynamic because detection of changes occurs as the current row is
processed. This is a high-performance cursor that uses the least
resources.

• Keyset—This cursor allows forward and backward navigation. You can
see records added by other users, but records deleted by others will not
be removed from view.

• Dynamic—This cursor allows forward and backward navigation. You
can see all changes made to the database, locally and by other users.
Use the dynamic cursor if your application must detect all concurrent
updates made by other users.

• Static—This cursor allows forward and backward navigation with no
ability to see any changes made by other users during navigation. The
static cursor always displays the result set as it was when the cursor
was first opened. Use the static cursor if your application does not need
to detect data changes and requires scrolling.

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-6 ni.com

Moving Through Recordsets
Use the DB Tools Move To Next Record, DB Tools Move To Previous
Record, and DB Tools Move To Record N VIs to navigate through the
results of a database query. Figures 5-4 and 5-5 show how you can scroll
forward and backward through a recordset using a static cursor.

Figure 5-4. Navigating to the Next Record in a Recordset

First, the connection to a database is opened and the DB Tools Execute
Query is used to open a table and specify a static cursor. Usually, you use
the DB Tools Execute Query to send an SQL statement to a database.
However, if you send the table name to this VI, it returns a recordset
reference to all the records in that table. The DB Tools Get Properties VI
returns the beginning of file (BOF) and the end of file (EOF) markers to
make sure that there are records in the table. There are two buttons on the
panel labeled Next Record and Previous Record. Clicking Next Record,
calls the DB Tools Move To Next Record VI, the EOF property is read, and
trying to move past the last record in the table, calls the DB Tools Move To
Previous Record VI. The cursor is now pointed at the last record in the
table.

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-7 Database Connectivity Toolset User Manual

Figure 5-5. Navigating to the Previous Record in a Recordset

Figure 5-5 shows what happens when you click the Previous Record
button. The DB Tools Move To Previous Record VI is called, the BOF
property is read, and if you have tried to move before the first record in the
table, the DB Tools Move To Next Record VI is called. This leaves the
cursor pointed at the first record in the table. Notice that you need to use the
static cursor type in these examples because you are scrolling forward and
backward in the recordset.

Figure 5-6 shows how you use the DB Tools Move To Record N VI to
display the information from any record in a table when you know the
record number. The first record in the recordset has a value of zero.

Figure 5-6. Navigating to the nth Record in a Recordset

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-8 ni.com

The DB Tools Get Properties VI used in Figure 5-6 returns the number of
records in the table and displays that value in the panel. You can also use
this value to make sure the user does not enter a value for Get # that is not
a valid record number. The VI in Figure 5-6 ends with an error message if
you ask for a record number that does not exist. The static cursor used in
Figure 5-6 allows scrollability through the entire recordset.

Using Parameterized Statements
You can use parameters in statements when using the Database
Connectivity Toolset. Parameterized statements allow you to specify the
SQL statement once, but vary the parameters, such as the matching criteria
of a WHERE clause, over time. Prepare a parameterized statement using
the DB Tools Create Parameterized Query VI as shown in Figure 5-7.
You specify the SQL statement with parameters. You create the parameters
input either by creating a control on the panel or by creating a constant
on the block diagram. The parameters input is an array of clusters where
each array value represents a column or field in the database table.
Each parameter cluster contains the following four values:

• The name of the parameter—This is a string that you can leave empty
if the parameter is not named.

• The parameter type—This is an enumerated type with the following
values: string, long, single, double, date/time, or binary.

• The parameter direction—This is an enumerated type with the
following four values: input, output, input/output, or return value.

• The initial value—You can leave this value as an empty variant and set
the value later with the DB Tools Set Parameter Value VI as shown in
Figure 5-7.

The example shown in Figure 5-7 shows the SQL statement, insert into
testresults (channel, dateval, binval) values (?, ?, ?).
This means that a table named testresults already exists with three
fields (columns) named channel, dateval, and binval. The question
marks represent parameters set later in the data acquisition loop. The
parameters array also specifies the names of the parameters and their data
types. These data types must match the data types as defined by the
testresults database table. The DB Tools Create Parameterized Query
VI returns an error if the number of parameters described in the SQL
statement do not match the number of array elements in the parameters
input, if the column names in the SQL statement do not match the column
names in the testresults database table, or if the data types defined in

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-9 Database Connectivity Toolset User Manual

the parameters array cluster do not match the data types in the
testresults database table.

Figure 5-7. Writing Parameterized Data to a Table

Figure 5-7 shows the DB Tools Open Connection and the DB Tools Create
Parameterized Query VIs used before the data acquisition loop begins.
Inside the acquisition loop, the DB Tools Set Parameter Value VI writes the
data to the database. Notice that you can specify the parameter index input
as either a string specifying the parameter name or as a number
representing the index into the parameters array. After setting all the
parameter values, the DB Tools Execute Query VI executes the statement.
The DB Tools Free Object VI and the DB Tools Close Connection VI
release the various reference values and close the database connection.

The example in Figure 5-7 can be viewed in a different way by taking the
ADO object reference types into account. The DB Tools Open Connection
VI creates a Connection reference. The DB Tools Create Parameterized
Query VI uses the Connection reference and creates a Command reference.
The Command reference passes through the DB Tools Set Parameter Value
VI and the DB Tools Execute Query VI changes it to a
Command-Recordset reference. The first DB Tools Free Object VI takes
the Command-Recordset reference and returns a Command reference. The
second DB Tools Free Object VI takes the Command reference and returns
a Connection reference. Last, the DB Tools Close Connection VI releases

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-10 ni.com

the Connection reference. Each time an ADO object reference opens, you
must call the DB Tools Free Object to close it.

You can use parameters in any kind of SQL statement and not just INSERT
statements as shown in the example in Figure 5-7. However, not all
databases or data providers support parameterized statements. Refer to
your ADO, data provider, or database documentation for more information
about what features are supported. Parameterized SQL queries are an
advanced topic in most books about SQL programming. Parameters used
with stored procedures are discussed in the next section.

Using Stored Procedures
A stored procedure is a precompiled collection of SQL statements and
optional control-of-flow statements, similar to a macro. Each database and
data provider supports stored procedures differently. For example, you can
create a stored procedure using the Jet 4.0 provider, but Access does not
support them through its usual user interface. A stored procedure created in
one DBMS might not work with another. This section describes how to
create and run stored procedures, with and without parameters, using the
Database Connectivity Toolset.

Although stored procedures are an advanced topic, they offer the following
benefits to your database applications:

• Performance—Stored procedures are usually more efficient and faster
than using regular SQL queries because the SQL statements are parsed
for syntactical accuracy and precompiled by the DBMS when the
stored procedure is created. Also, combining a large number of SQL
statements with conditional logic and parameters into a stored
procedure allows the procedures to perform the queries, make
decisions, and return the results without extra trips to the database
server.

• Maintainability—You isolate the lower-level database structure from
the LabVIEW application by using stored procedures. As long as the
table names, column names, parameter names and types do not change
from what is stated in the stored procedure, you do not need to modify
the procedure when changes are made to the database schema. Stored
procedures are also a way to support modular SQL programming
because after you create a procedure, you and other users can reuse that
procedure without knowing the details of the tables involved.

• Security—When creating tables in a database, the DBA is able to set
EXECUTE permissions on stored procedures without granting

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-11 Database Connectivity Toolset User Manual

SELECT, INSERT, UPDATE, and DELETE permissions to users.
Therefore, the data in these tables is protected from users who are not
using the stored procedures.

Creating Stored Procedures
You usually create stored procedures in the DBMS environment. Some
DBMSs, such as SQL Server contain a library of system stored procedures,
with names starting with sp_, that perform common administrative tasks
with databases. Refer to the documentation for your DBMS for the exact
syntax to use when creating a stored procedure. You also can use the
LabVIEW Database Connectivity Toolset to create stored procedures as
shown in Figure 5-8.

Figure 5-8. Creating a Stored Procedure

Figure 5-8 uses the same VIs as performing a typical SQL query, DB Tools
Open Connection, DB Tools Execute Query, DB Tools Free Object, and DB
Tools Close Connection. The syntax of the SQL query string is the only
difference. The SQL query string is a stored procedure that calls the
show_Dauthors_books query. The query string specifies the use of three
tables in the pubs database. The procedure joins the authors, titles,
and titleauthor tables to create a list of all the authors whose last name
begins with D, and the books they have published. The procedure also
arranges the result, where the first column combines the first and last names
and the second column contains the book title. When the VI runs, it creates
a stored procedure that does not use parameters. The Running Stored
Procedures without Parameters section describes how you can then call
the stored procedure using another VI.

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-12 ni.com

Running Stored Procedures without Parameters
You can run a stored procedure by simply inserting the name of the
procedure as an SQL query. Figures 5-9 and 5-10 show how you can call
the stored procedure created in Figure 5-8 using the DB Tools Execute
Query VI.

Figure 5-9. Front Panel Running a Stored Procedure

Figure 5-10. Block Diagram Running a Stored Procedure

Figure 5-10 shows the DB Tools Execute Query VI sending the name of the
stored procedure. The DB Tools Fetch Recordset Data returns the results of
the stored procedure in a two dimensional array of variants. The nested For
Loops convert the variants to strings so the results can be displayed in a
LabVIEW table indicator.

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-13 Database Connectivity Toolset User Manual

Running Stored Procedures with Parameters
Stored procedures can use variables internally as well as pass parameters
into and out of the procedure. Using the Database Connectivity Toolset,
there are two ways available to use parameters with stored procedures. In
the first method, you build SQL query strings that contain the name of the
stored procedure with the values embedded at the appropriate places in the
query. For example, assume you want to use the following stored
procedure:

CREATE PROCEDURE AddPart

 @part_name char(40),

 @part_qty int,

 @part_price money,

 @part_descr varchar(255) = NULL

AS

INSERT parts (name, qty, price, description)

VALUES (@part_name, @part_qty, @part_price,

@part_descr)

This stored procedure adds a record containing the part name, quantity,
unit price, and description to the table named parts. Figure 5-11 shows the
block diagram that calls this AddPart procedure.

Figure 5-11. Using Parameters with a Stored Procedure

Figure 5-11 shows how you construct the SQL query string using the
Format Into String function. The resulting query for this stored procedure
is AddPart 'widget', 24, 0.99, 'misc parts'. The DB Tools
Execute Query VI sends this query to the database just as you would send
any other SQL Query. You must know the parameters and data types used

Chapter 5 Advanced Database Operations

Database Connectivity Toolset User Manual 5-14 ni.com

in a stored procedure in order to properly call it from the Database
Connectivity Toolset.

The second way to use parameters with stored procedures is to use the DB
Tools Create Parameterized Query, DB Tools Set Parameters, and DB Tools
Get Parameters VIs. Figure 5-12 shows how you can use the previous VIs
to run the same stored procedure shown in Figure 5-11.

Figure 5-12. Using a Parameterized Stored Procedure

The format for the SQL query is slightly different than in the previous
example. The query string shown in Figure 5-12 uses the ODBC method
for calling a stored procedure where the previous example used the
Transact SQL (T-SQL) method used by SQL Server. The parameters in the
SQL query string are defined by the question marks and the parameters
array constant needs to contain as many elements as there are question
marks in the query. You specify the parameter name, data type, direction
(input, output, input/output, or return value), and the parameter value in
each parameter array element. You also set the stored procedure? input to
the DB Tools Create Parameterized Query VI to TRUE.

If you did not explicitly state values in the parameters array, use the DB
Tools Set Parameter Value VI as shown in Figure 5-12. The DB Tools Set
Parameter Value VI is polymorphic and can accept any LabVIEW data type
for the value input. The example above shows string, integer, and single
values wired to the DB Tools Set Parameter Value VI. You can specify the
parameter index as either a numeral as shown above or you can put the
parameter name as defined in the parameters array. After all the parameters
are defined, the DB Tools Execute Query VI runs the parameterized query.
The recordset and command references are freed with the DB Tools Free
Object VIs and the database connection is closed.

Chapter 5 Advanced Database Operations

© National Instruments Corporation 5-15 Database Connectivity Toolset User Manual

The stored procedure examples shown in this section are specifically
written for SQL Server. Oracle uses PL/SQL to create stored procedures.
Although the syntax for PL/SQL is different, you still can create and run
stored procedures for Oracle using the Database Connectivity Toolset.
Refer to the National Instruments support services for more information
about the stored procedures in Oracle and other topics related to the
Database Connectivity Toolset for LabVIEW.

© National Instruments Corporation 6-1 Database Connectivity Toolset User Manual

6
Building Applications

This chapter describes how you can build applications, executables or
shared libraries, that use the LabVIEW Database Connectivity Toolset.
The LabVIEW Database Connectivity Toolset requires some additional
options that are not part of a standard application build routine such as
MDAC and any DSN or UDL files.

Using the Database Connectivity Toolset Build Script
An application build script is included with the Database Connectivity
Toolset to help you create applications from programs you build using the
Database Connectivity Toolset VIs. Select Tools»Build Application or
Shared Library (DLL) to open Application Builder. Click the Load
button to open the Open window as shown in Figure 6-1. Open database
application template.bld in the LabVIEW/database directory.

Figure 6-1. Loading a Build Script

Chapter 6 Building Applications

Database Connectivity Toolset User Manual 6-2 ni.com

After you load the build script, you can go through the usual process of
selecting the target for the application (.exe or .dll), the directory
structure, and the build options. Click the Source Files tab to add your
top-level VI, shown in Figure 6-2. Notice that the project includes several
files that are used to install the Microsoft Data Access Components
(MDAC).

Figure 6-2. Including MDAC Source Files with Your Application

Note Include any necessary file DSNs or UDLs here that are associated with your
application in the Source Files tab.

Installing MDAC
You can have your application install MDAC 2.5 (ADO, OLE DB, and
ODBC) on the target machine by including the following supporting files,
shown in Figure 6-2.

• mdac_typ.exe—This is the MDAC 2.5 installer.

• mdac_eula.txt—This is the End User License Agreement for
MDAC. Read this document before building your application because
it contains important terms and conditions.

Chapter 6 Building Applications

© National Instruments Corporation 6-3 Database Connectivity Toolset User Manual

• Installing MDAC Q&A.htm—This document contains the answers
to frequently asked questions about installing/uninstalling MDAC and
other related issues. This document is not required for building an
application, but it contains useful information your users might need if
anything goes wrong with the MDAC installation on the target
computer.

• Readme.htm—This document is the readme for the MDAC 2.5
release. It contains known issues and current information about
MDAC 2.5 and related technologies.

• Release Manifest Intro.htm—This document is the
introduction for the release notes of MDAC. It gives a listing of the
contents of the Release Manifest.

• Release Manifest.htm—This document describes the features,
the list of installed files, and a complete list of known issues for
MDAC 2.5.

You need to install the mdac_typ.exe file with the source files and MDAC
with some command line arguments as shown in Figure 6-3. Select the
Installer Settings tab in the Application Builder. Click the Advanced
button to open the Advanced Installer Settings dialog box.

Figure 6-3. Running the MDAC Installer with Options

Chapter 6 Building Applications

Database Connectivity Toolset User Manual 6-4 ni.com

The /Q:A /C:”setup /QNT” command line prompt runs the
MDAC setup in unattended mode, no visible user interface, and is
not automatically rebooted. Refer to the Microsoft web site at
http://msdn.microsoft.com/library/psdk/dasdk/

mdac2lyb.htm for more options for the MDAC installation.

MDAC 2.6
The current version of MDAC at the time of the Database Connectivity
Toolset release is version 2.6. This version is fully compatible with the
Database Connectivity Toolset. However, the Database Connectivity
Toolset ships with MDAC 2.5 because it does not yet support any of the
new features of MDAC 2.6 and more localized versions of MDAC 2.5 are
available.

Using Non-English Versions of Windows
The English version of MDAC 2.5 is included with the Database
Connectivity Toolset and with the build script. However, do not include
this mdac_typ.exe file with your built application if you use a
non-English version of Windows. Microsoft provides localized versions of
MDAC 2.5 for many different languages. Download the appropriate file(s)
from the Microsoft web site at http://www.microsoft.com/data/
download.htm#25info

Chapter 6 Building Applications

© National Instruments Corporation 6-5 Database Connectivity Toolset User Manual

Using Data Links and DSNs
You need to include the UDL and DSN files for the database connection
with your application. User and System DSNs are only applicable to a
particular user or computer and you must create them manually on the
target machine using the ODBC Administrator. Figure 6-4 shows how you
can include a data link with your application on the Source Files page of
the Application Builder.

Figure 6-4. Including Data Links with Your Application

Chapter 6 Building Applications

Database Connectivity Toolset User Manual 6-6 ni.com

You cannot create data links by right-clicking in a Windows Explorer
window and selecting New»Microsoft Data Link. The installer for the
Database Connectivity Toolset creates data links by registering UDL files
in the Windows registry. If you want this capability, use the Register UDL
In Explorer example VI, shown in Figure 6-5.

Figure 6-5. Registering a UDL in a VI

The Register UDL In Explorer example VI creates a registry key called
UDL\ShellNew in the HKEY_CLASSES_ROOT entry that has an empty
string value named NullFile. You can run this VI once after you install
your application on a target machine. You must reboot the computer for this
registry change to take effect.

Chapter 6 Building Applications

© National Instruments Corporation 6-7 Database Connectivity Toolset User Manual

Note You must have the Windows Folder Options set to show file extensions in order
to use the New»Microsoft Data Link capability. Another option would be creating a new
file, giving it a .udl extension, and bypassing the message about file associates. The icon
should change to the UDL icon and you now can configure it using the Data Link
Properties window.

© National Instruments Corporation A-1 Database Connectivity Toolset User Manual

A
SQL Quick-Reference

This appendix lists and briefly explains the more common SQL
commands, operators, and functions available for databases. Refer to the
the database vendor documentation for information about specific SQL
implementations. Refer to Appendix B, References, for information about
general-purpose and tutorial texts on SQL.

This appendix includes a series of tables that describe SQL commands,
objects, clauses, and operators. Words that appear as all capital letters are
SQL keywords. Items having parentheses () require the parentheses in the
SQL statement. Items enclosed by square brackets [] are optional. Items
enclosed by curly brackets {} refer to items in other tables in this appendix.
The vertical bar | means or.

SQL Commands
Table A-1 lists SQL commands you can use with the SQL Toolkit VIs.

Table A-1. SQL Commands

SQL
Command Syntax Description and Examples

CREATE

TABLE

CREATE TABLE table_defn

(column_defn,

column_defn, ...)

CREATE is used to generate and define new
database tables.

CREATE TABLE tab1 (col1 NUMBER

(6,2), col2 CHAR(12) NOT NULL,

col3 DATE)

DELETE DELETE FROM table_defn

[WHERE where_clause]

DELETE removes rows from a database
table. A WHERE clause is used to select
specific rows to delete.

DELETE FROM tab1 WHERE col1

>= 12345

DROP TABLE DROP TABLE table_defn DROP is used to remove database tables.

DROP TABLE tab1

Appendix A SQL Quick-Reference

Database Connectivity Toolset User Manual A-2 ni.com

INSERT

INTO

INSERT INTO table_defn

[options] [(col_name,

col_name,...)] VALUES

(expr, expr,...)

INSERT creates a new record in a database
table and places data values into its columns.
Column data values are specified in a
VALUES clause. Options are specific to
individual databases.

INSERT INTO tab1 (col1, col2,

col3) VALUES (1, ’abcd’,

{2/21/93})

SELECT SELECT [DISTINCT] {* |

col_expr, col_expr,...}

FROM {from_clause}

[WHERE {where_clause}]

[GROUP BY

{group_clause,...}]

[HAVING

{having_clause,...}]

[ORDER BY

{order_clause,...}]

[FOR UPDATE OF

{col_expr,...}]

SELECT is used to query specified columns
FROM database tables. A WHERE clause is
used to restrict the selection; and ORDER
BY and GROUP BY clauses are used to
organize the resulting data.

SELECT col1, col2, col3 FROM tab1

WHERE col1 >= (col3 * col2) ORDER

BY col3 ASC

UPDATE UPDATE table_defn

[options] SET col_name =

expr, ... [WHERE

where_clause]

UPDATE is used to SET columns in existing
rows to new values. A WHERE clause is
used to restrict which rows to update.
Options are database specific.

UPDATE tab1 SET col1 = (col1 *

1.5) WHERE col1 <1000

Table A-1. SQL Commands (Continued)

SQL
Command Syntax Description and Examples

Appendix A SQL Quick-Reference

© National Instruments Corporation A-3 Database Connectivity Toolset User Manual

SQL Object Definitions
Table A-2 lists and defines SQL objects, which are the building blocks
for all SQL statements.

Table A-2. SQL Objects

Object
Abbreviation Object Name Description and Examples

table_defn Table Definition Describes a table on which to perform an operation.
It might be simply a table name, or might include a
full path specification (file-based databases only).

modtest

C:\qcdata\modtest

col_name Column Name Used to refer to columns in tables. Column name
restrictions are imposed by some databases.

Salary

col_expr Column Expression Used to specify a single column name or a complex
combination of column names, operators, and
functions.

SerNo

(highlimit-lowlimit)

AVG(Salary)

sort_expr Sort Expression any column expression

data_type Data Type Specifies a column’s data type.

CHAR(30)

constraint Constraint Specifies a constraint on the contents of a column.

NOT NULL

column_defn Column Definition Used in CREATE TABLE to describe a column to
create in a new table. It consists of col_name,
data_type, and (optional) constraint.

SerNo CHAR(30) NOT NULL

char_expr Character Expression Any expression that results in a character datatype.

date_expr Date Expression Any expression that results in a date datatype.

Appendix A SQL Quick-Reference

Database Connectivity Toolset User Manual A-4 ni.com

number_expr Number Expression Any expression that results in a number datatype.

logical_expr Logical Expression Any expression that results in a logical datatype.

expr Expression Any expression containing objects, operators, and/or
functions.

Character strings must be enclosed in single quotes.

Date strings must be enclosed in curly brackets.

Table A-2. SQL Objects (Continued)

Object
Abbreviation Object Name Description and Examples

Appendix A SQL Quick-Reference

© National Instruments Corporation A-5 Database Connectivity Toolset User Manual

SQL Clauses
Table A-3 lists and defines SQL clauses, which are used to fully specify
SQL commands.

Table A-3. SQL Clauses

Clause Name and Syntax
Applicable
Commands Description and Examples

FROM
table_defn [options]
[table_alias]

SELECT
DELETE

Describes a table to perform an
operation on. It might be just a table
name or might include a full path
specification (file-based databases
only). Options are database specific.

SELECT FROM modtest

Table alias is used to specify a column
name prefix to be used in subsequent
clauses.

SELECT FROM
C:\qcdata\modtes\MT

WHERE
expr1 comparison_oper expr2
[logical_oper expr3
comparison_oper expr4]...

SELECT
DELETE
UPDATE

Specifies conditions that are applied to
each row in the table to determine an
active set of rows. expr1 and expr2 are
any valid expressions. comparison_oper
is any comparison operator. Logical
operators can be used to connect
multiple conditions.

SELECT * FROM
C:\qcdata\modtes\MT WHERE
(MT.fld1 = 3 AND MT.fld2
<= 365)

Note: Use of table alias MT.

GROUP BY
col_expr{, col_expr,...}

SELECT Specifies one or more column
expressions to use to group active set
rows.

SELECT * FROM
C:\qcdata\modtest\MT WHERE
(MT.fld1 = 3 AND MT.fld2
<= 365) GROUP BY MT.fld4

Appendix A SQL Quick-Reference

Database Connectivity Toolset User Manual A-6 ni.com

HAVING
expr1 comparison_oper expr2

SELECT
used with
GROUP BY

Specifies conditions to apply to active
set row groups. GROUP BY must be
specified first.

SELECT * FROM
C:\qcdata\modtest\MT WHERE
MT.fld1 = 3 AND MT.fld2 <= 365
GROUP BY MT.fld4 HAVING
AVG(MT.fld5) >= 2344.56

ORDER BY
{sort_expr [DESC or ASC]}...

SELECT Use to specify row order in the active set
of rows and/or groups. DESC is
descending order. ASC is ascending
order.

SELECT * FROM
C:\qcdata\modtest\MT WHERE
(MT.fld1 = 3 AND MT.fld2
<= 365) GROUP BY MT.fld4
HAVING AVG(MT.fld5) >= 2344.56
ORDER BY MT.fld2 DESC

FOR UPDATE OF
col_name1[,col_name2,...]

SELECT Use to lock columns in selected rows for
updates or deletion.

SELECT * FROM
C:\qcdata\modtest\MT WHERE
(MT.fld1 = 3 AND MT.fld2
<= 365) FOR UPDATE OF MT.fld1,
MT.fld3

Table A-3. SQL Clauses (Continued)

Clause Name and Syntax
Applicable
Commands Description and Examples

Appendix A SQL Quick-Reference

© National Instruments Corporation A-7 Database Connectivity Toolset User Manual

SQL Operators
Table A-4 lists SQL expressions and operators.

Table A-4. SQL Operators

Operator Class Operators Description Example

Constants numeric constant 1234, 1234.5678

‘ ‘ “ “ character constant ‘abcd’, “abcd”

{} date – time constant {4/17/61},
{14:32:56}

.T. .F. logical constant .T., .F.

Numeric () operator precedence (A + B) * (C — D)

+ — sign — A

* / multiply/divide A * B, A / B

+ — add/subtract A + B, A — B

** ^ exponentiation A**B, A^B

Character + concatenate, keep trailing blanks ‘txt a ’+‘txt b’
(gives ‘txt a txt b‘)

— concatenate, move trailing
blanks to end

‘txt a ‘—’txt b‘
(gives ‘txt atxt b ‘)

Comparison
(true /
false)

= equal WHERE a = b

<> not equal WHERE a <> b

>= greater than or equal WHERE a >= b

<= less than or equal WHERE a <= b

IN contained in the set () WHERE a IN
(‘apple’,’orange’)

WHERE a IN
(SELECT...)

NOT IN not contained in the set () WHERE a NOT IN
(‘peach’,’pear’)

Appendix A SQL Quick-Reference

Database Connectivity Toolset User Manual A-8 ni.com

Comparison
(true /
false)

(continued)

ANY, ALL compare with a list of rows WHERE a = ANY
(SELECT ...)

BETWEEN within a range of values WHERE c BETWEEN a
AND e

EXISTS existence of at least one row WHERE EXISTS
(SELECT ...)

[NOT]
LIKE

character pattern match WHERE a LIKE ‘tar%’

[NOT]
NULL

empty (no value) WHERE a NOT NULL

Date + — add/subtract testdate+5 (result
is a new date)

testdate — {1/30/18}
(result is a number
of days)

Logical () precedence WHERE (a AND b) OR
(c AND d)

NOT complement of operand WHERE NOT (a IN
(SELECT ...)

AND true if both operands are true WHERE a = 1 AND
b <= 1000

OR true if either operand is true WHERE a = 1 OR
b <= 1000

Set UNION set of all rows from all individual
distinct queries

SELECT ... UNION
SELECT...

Other * all columns SELECT * FROM tab1

Table A-4. SQL Operators (Continued)

Operator Class Operators Description Example

Appendix A SQL Quick-Reference

© National Instruments Corporation A-9 Database Connectivity Toolset User Manual

SQL Functions
Table A-5 lists SQL functions.

Table A-5. SQL Functions

Function Description

ROUND(number_expr1,number_expr2) number_expr1 rounded to number_expr2
decimal places

CHR(number_expr) character having ASCII value number_expr

LOWER(char_expr) force all to lower case in char_expr

LTRIM(char_expr) remove leading blanks from char_expr

RTRIM(char_expr) remove trailing blanks from char_expr

TRIM(char_expr) remove trailing blanks from char_expr

SUBSTR(char_expr,
number_expr1,number_expr2)

substring of char starting at character number
number_expr1 of length number_expr2

UPPER (char_expr) force all letters in char_expr to upper case

LEFT(char_expr) leftmost character in char_expr

RIGHT(char_expr) rightmost character in char_expr

SPACE(number_expr) generate a string of number_expr blanks

IIF(logical_expr,True_Value,
False_Value)

returns True_Value if logical_expr is true,
returns False_Value if logical_expr is false

STR(number_expr,width[,precision]) converts number_expr to a character string of
width and optional precision fractional digits

STRVAL(expr) converts any expr to a character string

TIME() returns current time of day as character string

LEN(char_expr) number of characters in char_expr

AVG(numeric_column_name) average of all non-NULL values in
numeric_column_name

COUNT(*) number of all rows in a table

MAX(column_expr) maximum value of column_expr

Appendix A SQL Quick-Reference

Database Connectivity Toolset User Manual A-10 ni.com

MAX(number_expr1,number_expr2) larger of number_expr1 and number_expr2

MIN(column_expr) minimum value of column_expr

MIN(number_expr1,number_expr2) smaller of number_expr1 and number_expr2

SUM(column_expr) sum of values in column_expr

DTOC(date_expr, fmt_value[,
‘separator_char’])

convert date_expr from date to character string
using fmt template and (optional) separator
character (default is ‘/’). fmt_values are as
follows:

0 => MM/DD/YY
1 => DD/MM/YY
2 => YY/MM/DD
10 => MM/DD/YYYY
11 => DD/MM/YYYY
12 => YYYY/MM/DD

DTOS(date_expr) convert from date_expr to character string using
format YYYYMMDD

USERNAME() returns name of current user as character string
(not supported by all databases)

MOD(number_expr1,number_expr2) divides number_expr1 by number_expr2 and
returns remainder

MONTH(date_expr) returns month part of date_expr as a number

DAY(date_expr) returns day part of date_expr as a number

YEAR(date_expr) returns year part of date_expr as a number

POWER(number_expr1, number_expr2) raises number_expr1 to number_expr2 power

INT(number_expr) returns integer part of number_expr

NUMVAL(char_expr) converts char_expr to a number (if valid expr)

VAL(char_expr) converts char_expr to a number

Table A-5. SQL Functions (Continued)

Function Description

Appendix A SQL Quick-Reference

© National Instruments Corporation A-11 Database Connectivity Toolset User Manual

DATE() returns current date in date format

TODAY() returns current date in date format

DATEVAL(char_expr) converts char_expr to date format

CTOD(char_expr, fmt) converts char_expr to date format using fmt
template

0 => MM/DD/YY
1 => DD/MM/YY
2 => YY/MM/DD

Table A-5. SQL Functions (Continued)

Function Description

© National Instruments Corporation B-1 Database Connectivity Toolset User Manual

B
References

This appendix presents a categorized reference list for further reading on
the ADO standard, databases and database design, the ODBC standard,
the Structured Query Language, and related topics. Refer to the Microsoft
Universal Data Access web site at http://www.microsoft.com/data/
for more information about the different standards and to access the latest
and localized versions of MDAC and ADO.

ADO Standard and Applications
Professional ADO 2.5 Programming
David Sussman, et al ISBN 1-861002-75-0

Visual Basic Developer’s Guide to ADO
Mike Gunderloy ISBN 0-7821-2556-5

ADO Examples and Best Practices
William R. Vaughn ISBN 1-893115-16-X

Effective ADO
Northwest Training Systems ISBN 0-9673353-1-0

Use ADO to Maximize Stored Procedures
Dan Fox Nov 1, 1999
SQL Server Magazine at http://www.sqlmag.com/articles/

Databases and Database Application Design
Access Database Design & Programming
Steven Roman ISBN 1-56592-626-9

Client Server SQL Applications
S. Khoshafian, et al ISBN 1-55860-147-3

DATABASE - A Primer
C. Date ISBN 0-201-11358-9

Appendix B References

Database Connectivity Toolset User Manual B-2 ni.com

PC Magazine Guide to Client/Server Databases
J. Salemi ISBN 1-56276-070-X

Microsoft SQL Server 7.0
William Robinson ISBN 0-672-31663-3

Oracle8i for Dummies
Carol McCullough-Dieter ISBN 0-7645-0570-X

Visual Basic Oracle8 Programmer’s Reference
Dov Trietsch ISBN 1-861-00178-9

Open Data Base Connectivity (ODBC) Standard
Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide
Microsoft Press ISBN 1-55615-658-8

SQL Language Instructional Publications
A Visual Intro to SQL
J. Trimble, et al ISBN 0-471-61684-2

The Practical SQL Handbook
J. Bowman et al ISBN 0-201-62623-3

A Guide to the SQL Standard
C. Date, et al ISBN 0-201-55822-X

Instant SQL Programming
Joe Celko ISBN 1-874416-50-8

SQL Fundamentals
John Patrick ISBN 0-13-096016-0

SQL for Dummies
Allen G. Taylor ISBN 0-7645-0415-0

© National Instruments Corporation C-1 Database Connectivity Toolset User Manual

C
Supported Data Types

This appendix contains several tables showing how the data types used by
LabVIEW, SQL, ADO, Microsoft Access, Oracle, and SQL Server map to
the Database Connectivity Toolset and to each other.

Table C-1 lists LabVIEW data types and the data types they correspond to
in the Database Toolset.

Table C-1. LabVIEW and the Database Toolset Data Types

LabVIEW Data Type Database Toolset Data Type

Number Number

String/Path Varchar

Array Binary

Cluster Binary

Boolean Varchar

Enum Number

Variant Binary or not supported

Picture Control Binary

WDT Binary

Refnum Not supported

I/O Channel Varchar or binary

Complex Numbers Not supported

Appendix C Supported Data Types

Database Connectivity Toolset User Manual C-2 ni.com

Table C-2. SQL-92 Data Types

Category SQL Data Type Description

Exact Numerics INTEGER Precision depends on the specific
SQL implementation; database
developer cannot specify the
precision.

SMALLINT Can be the same as or smaller
representation as Integer.

NUMERIC You can specify both the precision
and the scale. For example,
Numeric (10,2) gives a maximum
value of 99,999,999.99.

DECIMAL Similar to Numeric, but can hold
larger values than defined if the
specific implementation (OS)
permits.

Approximate Numerics
—

For values so large that exactness
isn't necessary, but a close
approximation.

REAL Single-precision floating point
number determined by the OS
implementation of a SGL.

DOUBLE PRECISION Double-precision floating-point
number determined by the OS
implementation of a DBL.

FLOAT Allows you to specify precision
such as FLOAT (5)

Character Strings CHAR (x) Fixed character data such as CHAR
(16). Extra is filled with spaces.

VARCHAR (x) Varying character data. Does not
pad with spaces.

Bit Strings BIT (x) Similar to CHAR. Defaults to 1 bit.

BIT VARYING (x) Similar to VARCHAR.

Appendix C Supported Data Types

© National Instruments Corporation C-3 Database Connectivity Toolset User Manual

Datetimes DATE Length of 10 positions in the form:
YYYY-MM-DD

TIME (p) Has the form: HH:MM:SS.SSS…
specified by p

TIMESTAMP Length of 19 as 10 for date, a space,
and 8 time

TIME WITH TIME ZONE Same as TIME with an offset
(–12:59 to +13:00) to GMT.

TIMESTAMP WITH TIME
ZONE

Same as TIMESTAMP with an
offset to GMT.

Intervals year-month Difference between two datetime
values given in years and months.

day-time Difference between two datetime
values given in days, hours,
minutes, and seconds.

NULL — Undefined field.

Table C-2. SQL-92 Data Types (Continued)

Category SQL Data Type Description

Appendix C Supported Data Types

Database Connectivity Toolset User Manual C-4 ni.com

Table C-3 lists SQL Server data types, their descriptions, and their size and
range.

Table C-3. SQL Server Data Types

SQL Data Type Description Size and Range

binary (n) Miscellaneous binary
information, n bytes long

Fixed length of n bytes

bit A single true or false value At least one byte; up to eight bit
columns can be combined into a byte
by SQL Server

char (n) Up to n letters, numbers, or
punctuation characters

Fixed length of n bytes

(small) datetime A date, time, or both smalldatetime: 4 bytes, from
January 1, 1900 to June 6, 2079,
accurate to one min. datetime:
8 bytes, January 1, 1753 to
December 31, 9999, accurate to
+/– 0.002 seconds

decimal (p [,s]) An arbitrary precision floating
point number allowing p
significant digits with up to s to
the right of the decimal

p significant digits with up to s digits
to the right of the decimal point;
requires 5 bytes if p < 10, 7 for p of
10 to 19, and 13 for p of 20 to 28

image Large binary data 16 bytes; stores up to 2 GB of data
outside the table

(small or tiny) int Whole numbers tinyint:onebyte,0–255
smallint: two bytes,
–32768 to 32767 int: four bytes,
+/– about 2 billion

(small) money Monetary amounts smallmoney: four bytes,
+/– 200,000 money: eight bytes,
+/– about 900 trillion

numeric (p [,s]) General number type
(same as decimal)

Generally equivalent to decimal

real (n) General floating point type
with n bits of precision

where n is bits of precision; for n up
to 24 (7 significant digits), 4 bytes;
8 bytes for n > 24 (15 significant
digits)

Appendix C Supported Data Types

© National Instruments Corporation C-5 Database Connectivity Toolset User Manual

text Large text objects 16 bytes; stores up to 2GB of data
outside the table

timestamp Field automatically filled in
with a time-based, unique
counter value when a row is
inserted or updated

8 bytes

varbinary (n) Variable length binary field,
up to n bytes

variable size up to 8000 bytes,
plus four bytes of overhead;
n is maximum bytes allowed

varchar (n) Variable length text field,
up to n characters

variable size up to 8000 characters; n
is maximum bytes allowed

ntext Unicode version of text —

nchar Unicode version of char —

nvarchar Unicode version of varchar —

NULL special non-value —

Table C-3. SQL Server Data Types (Continued)

SQL Data Type Description Size and Range

Appendix C Supported Data Types

Database Connectivity Toolset User Manual C-6 ni.com

Table C-4. ADO Data Types

AdArray
(Does not apply to ADOX.)

0x2000 A flag value, always combined with another
data type constant, that indicates an array of that
other data type.

adEmpty 0 Specifies no value (DBTYPE_EMPTY).

AdSmallInt 2 Indicates a two-byte signed integer
(DBTYPE_I2).

adInteger 3 Indicates a four-byte signed integer
(DBTYPE_I4).

adSingle 4 Indicates a single-precision floating-point value
(DBTYPE_R4).

adDouble 5 Indicates a double-precision floating-point
value (DBTYPE_R8).

adCurrency 6 Indicates a currency value (DBTYPE_CY).
Currency is a fixed-point number with four
digits to the right of the decimal point. It is
stored in an eight-byte signed integer scaled by
10,000.

adDate 7 Indicates a date value (DBTYPE_DATE).
A date is stored as a double, the whole part of
which is the number of days since December
30, 1899, and the fractional part of which is the
fraction of a day.

adBSTR 8 Indicates a null-terminated character string
(Unicode) (DBTYPE_BSTR).

adIDispatch 9 Indicates a pointer to an IDispatch interface on
a COM object (DBTYPE_IDISPATCH).

Note: This data type is currently not supported
by ADO. Usage might cause unpredictable
results.

adError 10 Indicates a 32-bit error code
(DBTYPE_ERROR).

adBoolean 11 Indicates a Boolean value (DBTYPE_BOOL).

Appendix C Supported Data Types

© National Instruments Corporation C-7 Database Connectivity Toolset User Manual

adVariant 12 Indicates an Automation Variant
(DBTYPE_VARIANT).

Note: This data type is currently not supported
by ADO. Usage might cause unpredictable
results.

adIUnknown 13 Indicates a pointer to an IUnknown interface
on a COM object (DBTYPE_IUNKNOWN).

Note: This data type is currently not supported
by ADO. Usage might cause unpredictable
results.

adDecimal 14 Indicates an exact numeric value with a fixed
precision and scale (DBTYPE_DECIMAL).

adTinyInt 16 Indicates a one-byte signed integer
(DBTYPE_I1).

adUnsignedTinyInt 17 Indicates a one-byte unsigned integer
(DBTYPE_UI1).

adUnsignedSmallInt 18 Indicates a two-byte unsigned integer
(DBTYPE_UI2).

adUnsignedInt 19 Indicates a four-byte unsigned integer
(DBTYPE_UI4).

adBigInt 20 Indicates an eight-byte signed integer
(DBTYPE_I8).

adUnsignedBigInt 21 Indicates an eight-byte unsigned integer
(DBTYPE_UI8).

adFileTime 64 Indicates a 64-bit value representing the
number of 100-nanosecond intervals since
January 1, 1601 (DBTYPE_FILETIME).

adGUID 72 Indicates a globally unique identifier (GUID)
(DBTYPE_GUID).

adBinary 128 Indicates a binary value (DBTYPE_BYTES).

adChar 129 Indicates a string value (DBTYPE_STR).

adWChar 130 Indicates a null-terminated Unicode character
string (DBTYPE_WSTR).

Table C-4. ADO Data Types (Continued)

Appendix C Supported Data Types

Database Connectivity Toolset User Manual C-8 ni.com

adNumeric 131 Indicates an exact numeric value with a fixed
precision and scale (DBTYPE_NUMERIC).

adUserDefined 132 Indicates a user-defined variable
(DBTYPE_UDT).

adDBDate 133 Indicates a date value (yyyymmdd)
(DBTYPE_DBDATE).

adDBTime 134 Indicates a time value (hhmmss)
(DBTYPE_DBTIME).

adDBTimeStamp 135 Indicates a date/time stamp
(yyyymmddhhmmss plus a fraction in
billionths) (DBTYPE_DBTIMESTAMP).

adChapter 136 Indicates a four-byte chapter value that
identifies rows in a child rowset
(DBTYPE_HCHAPTER).

adPropVariant 138 Indicates an Automation PROPVARIANT
(DBTYPE_PROP_VARIANT).

adVarNumeric 139 Indicates a numeric value (Parameter object
only).

adVarChar 200 Indicates a string value (Parameter object
only).

adLongVarChar 201 Indicates a long string value (Parameter
object only).

adVarWChar 202 Indicates a null-terminated Unicode character
string (Parameter object only).

adLongVarWChar 203 Indicates a long null-terminated Unicode string
value (Parameter object only).

adVarBinary 204 Indicates a binary value (Parameter
object only).

adLongVarBinary 205 Indicates a long binary value (Parameter
object only).

Table C-4. ADO Data Types (Continued)

Appendix C Supported Data Types

© National Instruments Corporation C-9 Database Connectivity Toolset User Manual

Table C-5. Oracle Data Types Mapped to ADO

Oracle Data Type ADO Data Type Fixed Width?

BLOB 128 False

LONG RAW 128 False

BFILE 128 False

RAW 128 False

CLOB 129 False

LONG 129 False

CHAR 129 True

DECIMAL 131 True

DOUBLE
PRECISION

5 True

DATE 135 True

VARCHAR2 129 False

NUMBER 131 False

Table C-6. SQL Server Data Types Mapped to ADO

SQL Server
Data Type ADO Data Type Fixed Width?

uniqueidentifier 72 True

ntext 130 False

nvarchar 130 False

sysname 130 False

nchar 130 True

bit 11 True

tinyint 17 True

tinyint identity 17 True

image 128 False

Appendix C Supported Data Types

Database Connectivity Toolset User Manual C-10 ni.com

varbinary 128 False

binary 128 True

timestamp 128 True

text 129 False

char 129 True

numeric 131 True

numeric() identity 131 True

decimal 131 True

money 6 True

smallmoney 6 True

decimal() identity 131 True

int 3 True

int identity 3 True

smallint 2 True

smallint identity 2 True

float 5 True

real 4 True

datetime 135 True

smalldatetime 135 True

varchar 129 False

Table C-6. SQL Server Data Types Mapped to ADO (Continued)

SQL Server
Data Type ADO Data Type Fixed Width?

Appendix C Supported Data Types

© National Instruments Corporation C-11 Database Connectivity Toolset User Manual

Table C-7. Access Data Types Mapped to ADO

Access Data Type ADO Data Type Fixed Width?

GUID 72 True

LONGCHAR 130 False

VARCHAR 130 False

CHAR 130 True

BIT 11 True

BYTE 17 True

LONGBINARY 128 False

VARBINARY 128 False

BINARY 128 True

CURRENCY 6 True

INTEGER 3 True

COUNTER 3 True

SMALLINT 2 True

REAL 4 True

DOUBLE 5 True

DATETIME 135 True

Table C-8. Supported SQL Data Types by Database and ADO

SQL Data Types ORACLE8 SQL Server 7.0 Access 2000

Integer Yes

adNumeric(131)

Yes

adInteger(3)

Yes

adInteger(3)

Float Yes

adDouble(5)

Yes

adDouble(5)

Yes

adDouble(5)

Single Not supported Not supported Yes

adSingle(4)

Appendix C Supported Data Types

Database Connectivity Toolset User Manual C-12 ni.com

Real Yes

adDouble(5)

Yes

adSingle(4)

Yes

adSingle(4)

Double Precision Yes

adDouble(5)

Yes

adDouble(5)

Not Supported—
but Double works

Smallint Yes

adNumeric(131)

Yes

adSmallint(2)

Yes

adSmallint(2)

Datetime Not supported Yes

adDBTimeStamp(135)

Yes

adDBTimeStamp(135)

Date Yes

adDBTimeStamp(135)

Not supported Yes

adDBTimeStamp(135)

Binary(n) Not supported Yes

adBinary(128)

8000 bytes max

Yes

adBinary(128)

510 bytes max

Varbinary(n) Not supported Yes

adVarBinary(204)

8000 bytes max

Yes

adVarBinary(204)

510 bytes max

Char(n) Yes

adChar(129)

2000 bytes max

Yes

adChar(129)

8000 bytes max

Yes

adWChar(130)

255 UNICODE char

Varchar(n) Yes

adVarChar(200)

2000 bytes max

Yes

adVarChar(200)

8000 bytes max

Yes

adWVarChar(202)

255 UNICODE char

Varchar2(n) Yes

adVarChar(200)

4000 bytes max

— —

Table C-8. Supported SQL Data Types by Database and ADO (Continued)

SQL Data Types ORACLE8 SQL Server 7.0 Access 2000

© National Instruments Corporation D-1 Database Connectivity Toolset User Manual

D
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com.

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com.

Appendix D Technical Support Resources

Database Connectivity Toolset User Manual D-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 Database Connectivity Toolset User Manual

Glossary

A

ActiveX Microsoft’s Object Linking and Embedding (OLE) technology that allows
components from one application to be embedded in another application.
For example, placing an Excel table into a Word document. Microsoft
first used the term OLE to refer to its COM-based architecture, then
later dropped that designation in favor of ActiveX. Since both OLE and
ActiveX are based on COM, the term COM is also used. As a result, any
combination of the words COM, OLE and ActiveX followed by the words
control, object and component may mean the same thing.

ActiveX Data
Objects (ADO)

Microsoft API that is designed as the Microsoft standard for data access. It
is a COM object and is available for all Microsoft programming languages
and applications. ADO is the method used by the Database Connectivity
Toolkit to communicate with databases.

Advanced Data
TableGram (ADTG)

Proprietary Microsoft binary file format and one of the two file formats that
are supported specifically by the Database Connectivity Toolset. ADTG
has the advantage of being a compact binary format that results in much
smaller files written faster than if you use XML format.

American National
Standards Institute
(ANSI)

Standards organization that is involved with adopting SQL as a standard
and partly responsible for the fact that most major commercial relational
database products support SQL to some degree.

Application
Programming
Interface (API)

Language and message format that an application program uses to
communicate with the operating system or some other system or control
program such as a DBMS or communications protocol. APIs are
implemented by writing function calls in the program, which provide the
linkage to the required subroutine for execution. Thus, an API implies that
some program module is available in the computer to perform the operation
or that it must be linked into the existing program to perform the tasks.

Glossary

Database Connectivity Toolset User Manual G-2 ni.com

B

Beginning Of
File (BOF)

Marker that points just before the first record in a database table.

Binary coded
decimal (BCD)

Storage of numbers in which each decimal digit is converted into binary
and is stored in a single character or byte. For example, a 12-digit number
would take 12 bytes.

Binary Large
Objects (BLOB)

Database field that holds any digitized information including text, images,
audio and video. BLOB is a data type used by Oracle to store binary data.
LabVIEW data types such as arrays, waveforms, and clusters are stored as
BLOBs while using the Database Connectivity Toolset.

build script File that is generated and used by the LabVIEW Application Builder that
describes how to create an executable or shared library (DLL) from a VI.
The name of the build script used by the Database Connectivity Toolset is
database application template.bld, and it is in the database directory in
your LabVIEW directory.

C

client-side cursor Type of cursor that requires all data to reside on the client’s, or user’s,
machine. A client-side cursor is slow and memory intensive for large
databases.

Code Interface
Node (CIN)

One method of incorporating C code into the LabVIEW environment.
It consists of compiling a code resource. Many restrictions and rules
apply when creating or using a CIN, so you should refer to the LabVIEW
manuals.

command One of the main ADO objects. The two major uses for a command object
are to execute statements against an OLE DB connection and to retrieve a
recordset based on an SQL query or stored procedure.

commit Term used with database transactions. When you commit a transaction,
it carries through all the operations within the transaction and saves the
changes to the database.

Glossary

© National Instruments Corporation G-3 Database Connectivity Toolset User Manual

compatibility VIs Library of VIs that is provided with the Database Connectivity Toolset
so users of the SQL Toolkit for G can convert their applications to the
new methodology. These compatibility VIs are installed into the
LabVIEW\vi.lib\addons_SQL directory and have the same names
and connectors as the VIs in the SQL Toolkit.

connection One of the main ADO objects that represents an open connection to an
OLE DB data source. A connection object contains methods for setting
timeouts and maintaining information about the connection.

constraints Used by SQL to define rules determining what values the table entries can
have.

cursor Placeholder that points to a specific record in a recordset.

D

Data Access
Objects (DAO)

Pogramming interface for data access using Microsoft Access. DAO/Jet
provides access to the Jet database, and DAO/ODBCDirect provides an
interface to ODBC databases.

Data Control
Language (DCL)

Component of SQL that protects databases from harm such as locking a
database so users cannot modify data in the database in the middle of a
transaction.

Data Definition
Language (DDL)

Component of SQL that creates, modifies, or deletes database structures,
or tables.

Data Manipulation
Language (DML)

Component of SQL that operates on data within the database.

data source A database or any other application or object that contains data you wish to
access with the Database Connectivity Toolset.

Data Source
Name (DSN)

Way to refer to a specific database. You specify a DSN with a unique name
and by the ODBC driver that communicates with the physical database
(local or remote). You create a DSN using the ODBC Administrator in
Windows.

Glossary

Database Connectivity Toolset User Manual G-4 ni.com

data types Categories of data that reside in a data source. Data types greatly vary
between different data sources and the Database Connectivity Toolset
converts data between types in order to be compatible with LabVIEW,
Oracle, Access, SQL Server, SQL, and other DBMS. Examples of data
types include integers, floats, string, binary, BLOB, date/time, array, and
variant.

database Set of related files that is created and managed by a database management
system (DBMS). Today, DBMSs can manage any form of data including
text, images, sound and video. Database and file structures are always
determined by the software.

Database
Administrator (DBA)

Person(s) responsible for maintaining databases within a company and has
all access privileges.

database management
system (DBMS)

System that stores information in and retrieves information from databases.
Examples of a DBMS are Oracle and SQL Server.

drop Another term for delete. For example, when you drop a table, you are
deleting that table from the database as well as destroying the structure of
the table.

Dynamic Link
Library (DLL)

Executable program module used in Windows that performs some function.
DLLs are called by a running application and are loaded to provide
additional functionality. LabVIEW has the capability to call and create
DLLs.

E

End Of File (EOF) Marker that points after the last record in a database table.

Extensible Markup
Language (XML)

Text-based industry standard specification for describing data and one of
the two file formats that are supported specifically by the Database
Connectivity Toolset. XML is similar to HTML (HyperText Markup
Language) except XML can use an unlimited set of tags to describe any
type or structure of data.

Glossary

© National Instruments Corporation G-5 Database Connectivity Toolset User Manual

F

Federal Information
Processing Standard
(FIPS)

Standards organization involved with adopting SQL as a standard and
partly responsible for the fact that most major commercial relational
database products support SQL to some degree.

fetching Another name for retrieving data from a database table.

field Another name for a column in a database table. A Field is also an ADO
object that represents a single column of data in a recordset. The fields
collection is the default property of the Recordset object, so you will not
often see its name in the code.

File DSN Type of DSN where the connection information resides in a common text
file and can be used on any machine or any user.

I

Indexed Sequential
Access Method
(ISAM) databases

DBMS where data is stored sequentially, while maintaining an index of key
fields to all the records in the file for direct access. Examples of ISAM
databases include Paradox, dBase, Btrieve, Excel, and FoxPro. ISAM
databases use the Microsoft Jet Engine as their API.

Inner join Specific type of SQL query that combines the results of several tables into
one recordset.

INSERT Specific SQL query that is used to send data to a database table.

INTERSOLV Third party vendor that provides ODBC and OLE DB drivers for many
DBSMs. The Database Connectivity Toolset does not contain any Merant
drivers but they have been tested and work with the new VIs. Merant’s web
site is at http://www.merant.com.

Invoke Node LabVIEW function on the Functions»Communication»ActiveX palette
that allows you to call ActiveX methods, or functions.

International Standards
Organization (ISO)

Standards organization involved with adopting SQL as a standard and
partly responsible for the fact that most major commercial relational
database products support SQL to some degree.

Glossary

Database Connectivity Toolset User Manual G-6 ni.com

ISG Navigator Third party vendor that provides ODBC and OLE DB drivers for
many DBSMs. ISG Navigator’s web site is at
http://www.isgnavigator.com.

isolation levels Represent different locking strategies. The higher the isolation level, the
more complex the locking strategy is and the better it is at preventing data
inconsistencies. ADO, and the Database Connectivity Toolset, support five
isolation levels—Chaos (lowest level), Read Uncommitted, Read
Committed, Repeatable Read, and Serializable (highest level).

L

locking Method of protecting data that is used in multi-user database systems where
different users have access to the same data at the same time.

M

MDB files Microsoft Access databases.

Microsoft Component
Object Model (COM)

Component software architecture from Microsoft, which defines a structure
for building program routines (objects) that can be called and executed in a
Windows environment. COM provides the interfaces between objects, and
Distributed COM (DCOM) allows them to run remotely. COM objects can
be small or large, can be written in several programming languages, and can
perform any kind of processing.

Microsoft Data
Access Components
(MDAC)

Practical implementation of Microsoft’s UDA strategy. The LabVIEW
Database Connectivity Toolset version 1.0 includes MDAC 2.5 as part
of its installation. MDAC 2.5 includes the ODBC, OLE DB, and ADO
components. MDAC also installs several data providers you can use to
open a connection to a specific data source such as an Access database.

Microsoft Jet
database engine

Underlying DBMS of Microsoft Access databases (.mdb) and numerous
Indexed Sequential Access Method (ISAM) databases including Paradox,
dBase, Btrieve, Excel, and FoxPro. Visual Basic for Applications is the host
language for the Jet DBMS.

Glossary

© National Instruments Corporation G-7 Database Connectivity Toolset User Manual

N

non-relational
database

Method of storing data where all of the information is stored in one large
structure.

NULL value Empty field containing no data in databases. This does not imply that it
contains default data. It contains no data. LabVIEW has no concept of
NULL, so NULLs are treated as default data for a particular data type such
as an empty string, a zero-value numeric, a FALSE Boolean, or whatever
the default value is for that data type.

O

ODBC Administrator Windows Control Panel utility used to specify database connections.
You use the ODBC Administrator to configure and create DSNs.

OLE DB Common term for an OLE DataBase which is a COM programming
interface for data access from Microsoft. It functions in a similar manner
as ODBC, but for every type of data source not just SQL databases.
Applications can also use OLE DB to access ODBC databases. OLE DB
is a C++ API that allows for lower-level database access from a C++
compiler.

OLE DB Consumers One of the three general types of COM components for OLE DB.
Consumers are data-centric applications, components, or tools that use
data through the OLE DB interfaces. Using networking terms, OLE DB
consumers are the clients and the OLE DB data provider is the server.

OLE DB Data
Providers

One of the three general types of COM components for OLE DB. Data
providers are source specific software layers responsible for accessing and
exposing data. Using networking terms, OLE DB consumers are the clients
and the OLE DB data provider is the server.

OLE DB Service
Providers

One of the three general types of COM components for OLE DB. Service
Providers are optional components that implement standard services to
extend the functionality of data providers. Examples of these services
include cursor engines, query processors, and data conversion engines.

Online Analytical
Processing (OLAP)

Decision support software that allows you to analyze information that
has been summarized into multidimensional views and hierarchies.
For example, OLAP tools are used to perform trend analysis on sales
and financial information.

Glossary

Database Connectivity Toolset User Manual G-8 ni.com

Open Database
Connectivity
(ODBC)

Database API from Microsoft that provides a common language for
Windows applications to access databases on a network. ODBC is made
up of the function calls programmers write into their applications and the
ODBC drivers themselves. For client/server database systems such as
Oracle and SQL Server, the ODBC driver provides links to their database
engines to access the database. For desktop database systems such as
Access, dBASE and FoxPro, the ODBC drivers actually manipulate
the data. ODBC supports SQL and non-SQL databases. Although the
application always uses SQL to communicate with ODBC, ODBC will
communicate with non-SQL databases in its native language.

Oracle Call
Interface (OCI)

Oracle’s Native API for communicating between an application and the
Oracle DBMS.

P

Parameter Variable within an SQL query. A Parameter is also an ADO object that
represents a single parameter for a Command object. Generally, parameters
are used with any type of parameterized commands where an action is
defined once but can have results changed depending on the variable
values.

persistence Another term used to describe writing database records to file. Not only is
the data sent to the file, but also the structure and properties of the database
recordset.

polymorphic Term used in LabVIEW to mean a VI or function can accept different data
types for a single input. For example, the DB Tools Open Connection is
polymorphic because it can accept either a path or a string for the
connection information input.

primary key Field or combination of fields in a database table that uniquely identifies
each record in the table.

property Attribute or quality of an object. Property is also the ADO object which is
the building block of the other ADO objects. The properties collection
contains only the properties added to the object by the data provider and
does not contain the intrinsic properties of the object.

property node LabVIEW function on the Functions»Communication»ActiveX palette
that allows you to set or read the properties of an ActiveX object.

Glossary

© National Instruments Corporation G-9 Database Connectivity Toolset User Manual

Q

query Another name for an SQL statement or command. All SQL strings are
called queries whether they ask for data or not.

R

record Another name for a single row or entry in a database table. A record is also
an ADO object that works together with the Stream and Recordset objects
to help you navigate through data.

recordset Collection of records. Recordset is also the name of one of the main ADO
objects and it represents a set of records and is used to manipulate data in
a data source. You also can control cursors and the locking types for
recordsets.

references As used by the Database Connectivity Toolset, refernces are input and
output parameters that specify connections to ADO objects. The four
references used in the Database Connectivity Toolset are connection,
recordset, command, and command-recordset references.

refnums LabVIEW data type that refer to a specific connection. The Database
Connectivity Toolset uses ActiveX ADO refnums as components of the
references.

relational database Method for storing data where the information is stored in multiple
structures called tables. These structures are related to each other by one
or more columns, or fields.

Relational Database
Management system
(RDBMS)

DBMS that uses relational databases.

rollback Term used with database transactions. When you rollback a transaction,
it returns the database to the state it was in before the transaction started.

S

schema Overall organization for multiple tables in a database. A schema is also
called a conceptual view or a complete logical view.

scrollability Ability to move forwards and backwards within a recordset.

Glossary

Database Connectivity Toolset User Manual G-10 ni.com

SELECT Specific SQL query that is used to retrieve data from a database table.

server-side cursor Type of cursor that only downloads to the client machine the specific record
the cursor points to and keeps the remaining recordset data on the server.

SQL Access Group Includes representatives of Microsoft, Tandem, Oracle, Informix, and
Digital Equipment Corporations—developed the ODBC standard in
September 1992 as a uniform method for applications to access databases.
The standard consists of a multilevel API definition, a driver packaging
standard, an SQL implementation based on ANSI SQL, and a means for
defining and maintaining DSNs.

Stream ADO object that represents binary data, usually stored in Unicode. The
Stream object works together with the Record and Recordset objects to help
you navigate through data.

Structured Query
Language (SQL)

Language used to interrogate and process data in a relational database.
Originally developed by IBM for its mainframes, all database systems
designed for client/sever environments support SQL. SQL commands can
be used to interactively work with a database or can be embedded within
a programming language to interface to a database. SQL is a declarative
data description and manipulation language rather than a procedural
programming language. However, some programming extensions to SQL
have turned it into a full-blown database programming language.

stored procedure Precompiled set of SQL statements that perform a particular task, similar
to a function or macro. Stored procedures are an advanced SQL technique
that provides performance improvements and a way to share code.

System DSN Type of DSN that is stored in the Windows registry key
HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC.INI and is
available to all users of that machine.

T

table Structure used to store data in a database. Tables consist of fields (columns)
and records (rows).

transaction Indivisible unit of work done with database tables. You can enclose many
operations within a transaction so that all the operations are performed or
none of them are.

Glossary

© National Instruments Corporation G-11 Database Connectivity Toolset User Manual

U

Universal Data
Access (UDA)

Current technology and platform defined by Microsoft where applications
can exchange relational or non-relational data across intranets or the
Internet—essentially connecting any type of data with any type of
application. OLE DB is the Microsoft system-level programming interface
of UDA and ADO is the API.

Universal Data
Link (UDL)

File that defines a data source connection as defined by UDA. A UDL
contains information about what OLE DB provider is used (the default is
the Microsoft OLE DB provider for ODBC drivers), server information,
user ID and password (if required), default database, and other related
information.

User DSN is a type of DSN that is stored in the Windows registry key
HKEY_CURRENT_USER/SOFTWARE/ODBC/ODBC.INI and is available
to a particular user of that machine.

V

variant Data type used by ADO to return data from database tables. Variants work
well in languages such as Visual Basic, which are not strongly typed.
Because LabVIEW is strongly typed, you need to use the Database Variant
To Data function located on the Functions»Database palette to convert the
variant data to a LabVIEW data type before you can display the data in
standard indicators such as graphs, charts, LEDs, etc.

X

XML is the acronym for Extensible Markup Language.

© National Instruments Corporation I-1 Database Connectivity Toolset User Manual

Index

A
Access data types mapped to ADO (table), C-11
ActiveX Data Object standard. See

ADO standard.
ADO object reference types (example), 5-9
ADO standard, 2-12 to 2-14

ADO reference classes (table), 4-3
components of ADO object model

(table), 2-13 to 2-14
data types

Access data types mapped to ADO
(table), C-11

ADO data types (table), C-6 to C-8
Oracle data types mapped to ADO

(table), C-9
SQL data types mapped to ADO

(table), C-9
SQL server data types mapped to ADO

(table), C-10
supported SQL data types by database

and ADO (table), C-11 to C-12
object hierarchy (figure), 2-13
version 2.5 as basis for LabVIEW Database

Connectivity Toolset, 2-14
ADTG (Advanced Data TableGram) format, 4-8
advanced database VIs, 5-1 to 5-15

executing SQL statements and fetching
data, 5-1 to 5-3

navigating through database
records, 5-3 to 5-5

cursor types, 5-4 to 5-5
moving through recordsets, 5-6 to 5-8
using cursors, 5-3 to 5-4

parameterized statements, 5-8 to 5-10
stored procedures, 5-10 to 5-15

creating, 5-11

running with parameters, 5-13 to 5-15
running without parameters, 5-12

application development, 6-1 to 6-7
Application Builder, 6-1 to 6-2
build script, 6-1 to 6-2
data links and DSNs, 6-5 to 6-7
MDAC

installing, 6-2 to 6-4
MDAC 2.6, 6-4
using non-English versions

of Windows, 6-4

B
BLOB (binary) data type, 1-2
Boolean data types, 3-22
building applications, 6-1 to 6-7

Application Builder, 6-1 to 6-2
application design references, B-1
build script, 6-1 to 6-2
data links and DSNs, 6-5 to 6-7
MDAC

installing, 6-2 to 6-4
MDAC 2.6, 6-4
using non-English versions

of Windows, 6-4

C
Chaos isolation level, 4-7
clauses, SQL (table), A-5 to A-6
client-side cursor, 5-3 to 5-4
column information, retrieving, 4-1 to 4-2
COM interfaces. See Component Object

Model (COM).
Command component, ADO object model

(table), 2-13
Command reference class, ADO, 4-3

Index

Database Connectivity Toolset User Manual I-2 ni.com

Command-Recordset reference class,
ADO, 4-3

commands, SQL
common commands (table), 2-5
quick reference (table), A-1 to A-2

Component Object Model (COM)
OLE DB Consumers, 2-7
OLE DB Data Providers, 2-7
OLE DB Service Providers, 2-7

configuration
ODBC Administrator, 3-2 to 3-4
UDLs, 3-9 to 3-10

connecting to database, 3-1 to 3-11
DSNs

data source types, 3-1 to 3-2
examples of using, 3-4 to 3-6

ODBC administrator, 3-2 to 3-4
UDLs, 3-7 to 3-11

configuring, 3-9 to 3-10
creating, 3-7 to 3-8
example of using, 3-11

Connection component, ADO object model
(table), 2-13

Connection reference class, ADO, 4-3
Connection tab, Data Link Properties dialog

box, 3-10
conventions used in manual, x
CREATE TABLE command (table), 2-5, A-1
creating tables, 3-17 to 3-18
currency data types, 3-22
cursors

client-side cursor, 5-3 to 5-4
dynamic, 5-5
forward-only, 5-5
keyset, 5-5
server-side cursor, 5-4
static, 5-5
types of cursors, 5-4 to 5-5
using cursors, 5-3 to 5-4

customer education, D-1

D
Data Definition/Control Language

(DDL/DCL) statements, 2-5
data links. See UDLs (Universal Data Links).
Data Links Properties dialog box (figure), 3-9
Data Manipulation Language (DML)

statements, 2-5
Data Source Names (DSNs). See DSNs (Data

Source Names).
data types

Access data types mapped to ADO
(table), C-11

ADO (table), C-6 to C-8
automatic mapping of data types, 2-3
Boolean, 3-22
columns in tables, 2-3
currency, 3-22
date/time, 3-19
LabVIEW and DB Toolset data types

(table), C-1
NULL values, 3-20 to 3-21
Oracle data types mapped to ADO

(table), C-9
SQL

mapped to ADO (table), C-9
server types (table), C-4 to C-5
server types mapped to ADO

(table), C-10
SQL-92 data types

(table), C-2 to C-3
supported data types by database and

ADO (table), C-11 to C-12
supported data types, 3-18 to 3-22,

C-1 to C-12
database connections. See connecting

to database.

Index

© National Instruments Corporation I-3 Database Connectivity Toolset User Manual

database properties
ADO reference classes (table), 4-3
getting and setting, 4-2 to 4-4
specific properties, 4-4
utility VIs for getting and setting,

4-2 to 4-4
database transactions, 4-5 to 4-7

block diagram of transaction example
(figure), 4-5

locking transactions, 4-6
setting isolation levels, 4-6 to 4-7

Database Variant To Data function, 5-3
databases

application design references, B-1
basic concepts, 2-1 to 2-3
reference list, B-1

date and time
date/time data types, 3-19
formatting, 4-4 to 4-5

DB Tools Close Connection VI
creating and deleting tables, 3-17
creating stored procedures, 5-11
using parameterized statements, 5-8
writing data, 3-12

DB Tools Create Parameterized Query VI
executing SQL statements, 5-1
running stored procedures with

parameters, 5-13
using parameterized statements, 5-8, 5-9

DB Tools Create Table VI, 3-17, 3-23
DB Tools Database Transaction VI, 4-6
DB Tools Drop Table VI, 3-17, 3-18, 3-23
DB Tools Execute Query VI

creating stored procedures, 5-11
executing SQL statements, 5-1, 5-2
generating refnums, 4-8
opening tables and specifying cursor, 5-6
running stored procedures, 5-12
with parameters, 5-13, 5-14
using parameterized statements, 5-8

DB Tools Fetch Element Data VI, 5-1 to 5-3
DB Tools Fetch Next Recordset VI, 5-1
DB Tools Fetch Recordset Data VI

fetching data, 5-1, 5-2
reading and writing data files, 4-8
running stored procedures, 5-12

DB Tools Format Datetime Str VI, 3-19, 4-4
DB Tools Free Object VI

creating stored procedures, 5-11
fetching data, 5-2
reading and writing data files, 4-8
running stored procedures with

parameters, 5-13
using parameterized statements, 5-8, 5-10

DB Tools Get Parameters VI, 5-14
DB Tools Get Properties VI, 4-2, 5-6, 5-8
DB Tools Insert Data VI, 3-12, 3-17
DB Tools List Columns VI, 4-1 to 4-2
DB Tools Load Recordset From File VI,

4-8, 4-9
DB Tools Move To Next Record VI,

5-6 to 5-8
DB Tools Move To Previous Record VI,

5-6 to 5-8
DB Tools Move To Record N VI, 5-6 to 5-8
DB Tools Open Connection VI

creating and deleting tables, 3-17
creating stored procedures, 5-11
examples

DSNs, 3-4 to 3-5
UDLs, 3-7, 3-11

using parameterized statements, 5-8
writing data to database, 3-12

DB Tools Save Recordset To File VI, 4-8
DB Tools Select Data VI, 3-15, 3-17
DB Tools Set Parameter Value VI, 5-9, 5-14
DB Tools Set Properties VI, 4-2
DDL/DCL (Data Definition/Control

Language) statements, 2-5
DELETE command (table), 2-5, A-1

Index

Database Connectivity Toolset User Manual I-4 ni.com

deleting tables, 3-17 to 3-18
dirty reads, preventing, 4-6
DML (Data Manipulation Language)

statements, 2-5
documentation

conventions used in manual, ix
related documentation, x

DSNs (Data Source Names)
building applications, 6-5 to 6-7
data source types, 3-1 to 3-2
examples of using, 3-4 to 3-6
testing connections, 3-5 to 3-6

dynamic cursor, 5-5

E
Error component, ADO object model

(table), 2-14
examples

DSNs, 3-4 to 3-6
LabVIEW Database Connectivity Toolset

using with other databases,
3-22 to 3-23

using without a database, 3-23
UDLs, 3-11

Extensible Markup Language (XML), 4-8

F
fetching data, 5-1 to 5-3
Field component, ADO object model

(table), 2-14
floating point numbers, 1-2
Format Into String function, 5-13
formatting date and time, 4-4 to 4-5
forward-only cursor, 5-5
functions, SQL (table), A-9 to A-11

H
high-level database VIs, 3-11 to 3-18

creating and deleting tables, 3-17 to 3-18
reading data from database, 3-13 to 3-15
reading specific data from table,

3-16 to 3-17
writing data to database, 3-12 to 3-13

I
INSERT command (table), 2-5, A-1
installing

LabVIEW Database Connectivity
Toolset, 1-2 to 1-3

MDAC, 6-2 to 6-4
isolation levels

preventing data inconsistencies, 4-6
setting, 4-6 to 4-7

K
keyset cursor, 5-5

L
LabVIEW Database Connectivity Toolset

ADO version 2.5 as basis of, 2-14
background information, 2-3 to 2-6
examples

using with other databases,
3-22 to 3-23

using without a database, 3-23
installing, 1-2 to 1-3
overview, 1-1 to 1-2
upgrading from previous versions,

1-3 to 1-4
locking transactions, 4-6

Index

© National Instruments Corporation I-5 Database Connectivity Toolset User Manual

M
manual. See documentation.
MDAC (Microsoft Data Access Components)

installing, 6-2 to 6-4
MDAC 2.6, 6-4
overview, 2-6
using non-English versions of

Windows, 6-4
Microsoft ActiveX Data Object standard. See

ADO standard.
Microsoft Component Object Model (COM).

See Component Object Model (COM).
Microsoft Data Access Components. See

MDAC (Microsoft Data Access
Components).

N
navigating through database records,

5-3 to 5-5
cursor types, 5-4 to 5-5
moving through recordsets, 5-6 to 5-8
using cursors, 5-3 to 5-4

NI Developer Zone, D-1
non-repeatable reads, preventing, 4-6
NULL values, handling, 3-20 to 3-21

O
object definitions, SQL (table), A-3 to A-4
ODBC Administrator, 3-2 to 3-4

available ODBC drivers (figure), 3-3
ODBC Access Driver Setup dialog box

(figure), 3-4
ODBC Data Source Administrator dialog

box (figure), 3-2 to 3-4
ODBC standard

background information, 2-3 to 2-4
references, B-2

OLE DB providers
Jet, 2-10 to 2-11
ODBC, 2-8
Oracle, 2-11 to 2-12
SQL Server, 2-9

OLE DB standard
OLE DB Consumers, 2-7
OLE DB Data Providers, 2-7
OLE DB Service Providers, 2-7
overview, 2-7

Open Database Connectivity standard. See
ODBC standard.

operators, SQL (table), A-7 to A-8
Oracle databases

BLOB data types not supported by OLE
DB Provider, 1-2

OLE DB provider for Oracle,
2-11 to 2-12

Oracle data types mapped to ADO
(table), C-9

PL/SQL, 5-15

P
Parameter component, ADO object model

(table), 2-14
parameterized statements, 5-8 to 5-10
phantom reads, preventing, 4-6
PL/SQL (Oracle databases), 5-15
properties. See database properties.
Property component, ADO object model

(table), 2-14
Provider tab, Data Link Properties dialog box,

3-9 to 3-10

Index

Database Connectivity Toolset User Manual I-6 ni.com

R
Read Committed isolation level, 4-7
Read Uncommitted isolation level, 4-7
reading

data files, 4-8 to 4-9
data from database, 3-13 to 3-15
specific data from database, 3-16 to 3-17

record, definition (note), 5-2
Record component, ADO object model

(table), 2-14
Recordset component, ADO object model

(table), 2-13
Recordset reference class, ADO, 4-3
reference numbers (refnums)

generating with DB Tools Execute
Query VI, 4-8

not supported, 3-18 to 3-19
references

ADO standard and applications, B-1
databases and database application

design, B-1
ODBC standard, B-2
SQL language instructional

publications, B-2
Register UDL in Explorer example VI, 6-6
relational databases, 2-2
Repeatable Read isolation level, 4-7

S
SELECT command (table), 2-5, A-2
Serializable isolation level, 4-7
server-side cursor, 5-4
SQL (Structured Query Language)

background information, 2-4 to 2-6
classes of SQL statements, 2-5
clauses (table), A-5 to A-6
commands

common SQL commands (table), 2-5
quick reference (table), A-1 to A-2

data types
mapped to ADO (table), C-9
server types (table), C-4 to C-5
server types mapped to ADO

(table), C-10
SQL-92 data types (table),

C-2 to C-3
supported data types by database and

ADO (table), C-11 to C-12
executing statements with advanced

database VIs, 5-1 to 5-3
functions (table), A-9 to A-11
instructional publications, B-2
object definitions (table), A-3 to A-4
operators (table), A-7 to A-8
supported by standards organizations,

2-4 to 2-5
typical statement (example), 2-6
variants of, 2-6

SQL Toolkit, 2-3 to 2-4

static cursor, 5-5
stored procedures, 5-10 to 5-15

creating, 5-11
definition, 5-10
maintainability benefits, 5-10 to 5-11
performance benefits, 5-10
running

with parameters, 5-13 to 5-15
without parameters, 5-12

security benefits, 5-11
Stream component, ADO object model

(table), 2-14
Structured Query Language. See SQL

(Structured Query Language).
system integration, by National

Instruments, D-1

Index

© National Instruments Corporation I-7 Database Connectivity Toolset User Manual

T
tables

basic concepts, 2-1
creating, 3-17 to 3-18
data types, 2-3
deleting, 3-17 to 3-18
getting table and column information,

4-1 to 4-2
NULL values in table rows (note), 2-2
relational databases, 2-2
sample test sequence results (table), 2-2

technical support resources, D-1 to D-2
Test Data Source button (figure), 3-6
time

date/time data types, 3-19
formatting date and time, 4-4 to 4-5

transactions. See database transactions.

U
UDLs (Universal Data Links), 3-7 to 3-11

building applications, 6-5 to 6-7
configuring, 3-9 to 3-10
creating, 3-7 to 3-8
example of using, 3-11
registering in VI, 6-6

Universal Data Access (UDA), 2-6
UPDATE command (table), 2-5, A-2
upgrading from previous versions, 1-3 to 1-4
utility VIs, 4-1 to 4-9

formatting date and time, 4-4 to 4-5
getting and setting database properties,

4-2 to 4-4
getting table and column information,

4-1 to 4-2
performing database transactions,

4-5 to 4-7
writing and reading data files, 4-8 to 4-9

V
variant forms of SQL, 2-6
VIs

advanced database VIs, 5-1 to 5-15
executing SQL statements and

fetching data, 5-1 to 5-3
navigating through database records,

5-3 to 5-5
parameterized statements,

5-8 to 5-10
stored procedures, 5-10 to 5-15

high-level database VIs, 3-11 to 3-18
creating and deleting tables,

3-17 to 3-18
reading data from database,

3-13 to 3-15
reading specific data from table,

3-16 to 3-17
writing data to database, 3-12 to 3-13

utility VIs, 4-1 to 4-9
formatting date and time, 4-4 to 4-5
getting and setting database

properties, 4-2 to 4-4
getting table and column

information, 4-1 to 4-2
performing database transactions,

4-5 to 4-7
writing and reading data files,

4-8 to 4-9

W
Web support from National Instruments, D-1
Worldwide technical support, D-2
writing

data files, 4-8 to 4-9
data to database, 3-12 to 3-13

X
XML (Extensible Markup Language), 4-8

	LabVIEW Database Connectivity Toolset User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Overview
	Installing the LabVIEW Database Connectivity Toolset
	Upgrading from Previous Versions
	The Connection Reference Data Type Has Changed

	Chapter 2 Getting Started with the Database Connectivity Toolset
	Database Concepts
	Table 2-1. Sample Test Sequence Results
	Figure 2-1. Relational Database Table Concept

	Background of the Database Connectivity Toolset
	ODBC Standard
	Figure 2-2. Communication Path between LabVIEW and a Database Using the SQL Toolkit for G

	Structured Query Language (SQL)
	Table 2-2. Common SQL Commands
	Table 2-3. Example Query Results

	SQL Dialects

	Universal Data Access, OLE DB, and ADO
	OLE DB Standard
	OLE DB Provider for ODBC
	Figure 2-3. Communication Path between ADO and a Database Using the OLE DB Provider for ODBC

	OLE DB Provider for SQL Server
	Figure 2-4. Communication Path between ADO and an SQL Server Database Using the Native OLE DB Pro...

	OLE DB Provider for Jet
	Figure 2-5. Communication Path between ADO and an Access Database Using the Native OLE DB Provider

	OLE DB Provider for Oracle
	Figure 2-6. Communication Path between ADO and an Oracle Database Using the Native OLE DB Provider

	ActiveX Data Objects (ADO)
	Figure 2-7. ADO Object Hierarchy
	Table 2-4. ADO Object Model Components

	Chapter 3 Using the Database Connectivity Toolset
	Connecting to a Database
	DSNs and Data Source Types
	ODBC Administrator
	Figure 3-1. Data Sources Dialog Box
	Figure 3-2. Available ODBC Drivers
	Figure 3-3. ODBC Access Driver Setup Dialog Box

	Examples of Using DSNs
	Figure 3-4. Connecting to an Access Database Using a System DSN
	Figure 3-5. Connecting to an Access Database Using a File DSN
	Figure 3-6. Connecting to an Oracle Database Using a System DSN
	Figure 3-7. Testing a Database Connection using SQL Server

	UDLs
	Figure 3-8. Using the Prompt to Create a UDL
	Figure 3-9. Using Windows to Create a UDL

	Configuring a UDL
	Figure 3-10. Selecting the Provider for a UDL
	Figure 3-11. Configuring the Connection for a UDL

	Example Using a UDL
	Figure 3-12. Connecting to an Access Database Using a UDL

	High-Level Database VIs
	Writing Data to a Database
	Figure 3-13. Front Panel that Writes Data to a Database Table
	Figure 3-14. Block Diagram that Writes Data to a Database Table
	Figure 3-15. Database Table Displayed in Access

	Reading Data from a Database
	Figure 3-16. Front Panel that Reads Data from a Database Table
	Figure 3-17. VI Block Diagram that Reads Data from a Database Table
	Figure 3-18. Front Panel that Reads and Converts Data from a Database Table
	Figure 3-19. Block Diagram that Reads and Converts Data from a Database Table
	Figure 3-20. Specifying Multiple Database Tables for Reading Data

	Reading Specific Data from a Table
	Figure 3-21. Specifying Column Names for Reading Data
	Figure 3-22. Specifying Conditions for Reading Data

	Creating and Deleting Tables
	Figure 3-23. Block Diagram that Creates a Database Table
	Figure 3-24. Block Diagram that Deletes a Database Table

	Supported Data Types
	Table 3-1. Database Connectivity Toolset Data Types
	Working with Date/Time
	Handling NULL Values
	Figure 3-25. Front Panel Showing How NULLs Are Handled
	Figure 3-26. Block Diagram Showing How NULLs Are Handled

	Currency and Boolean Data Types
	Figure 3-27. Writing Boolean and Currency Data

	Using the Database Connectivity Toolset Examples
	Using the Examples with Other Databases
	Using the Examples without a Database

	Chapter 4 Database Connectivity Toolset Utilities
	Getting Table and Column Information
	Figure 4-1. Front Panel Showing How to Get Database Information
	Figure 4-2. Block Diagram Showing How to Get Database Information

	Getting and Setting Database Properties
	ADO Reference Classes
	Table 4-1. Database Connectivity Toolset Object Classes

	Specific Properties

	Formatting Date and Time
	Figure 4-3. Writing Date and Time to a Database
	Figure 4-4. Table Showing How to Get Database Information

	Performing Database Transactions
	Figure 4-5. Block Diagram of the Transaction Example
	Locking Transactions and Setting Isolation Levels
	Figure 4-6. Block Diagram of the Transaction Example

	Writing and Reading Data Files
	Figure 4-7. Writing Data to File
	Figure 4-8. Persisted Data in XML Format
	Figure 4-9. Persisting Data from File

	Chapter 5 Advanced Database Operations
	Executing SQL Statements and Fetching Data
	Figure 5-1. Fetching All the Query Results
	Figure 5-2. Fetching the Query Results from One Record

	Navigating through Database Records
	Using Cursors
	Cursor Types
	Figure 5-3. Possible Cursor Types

	Moving Through Recordsets
	Figure 5-4. Navigating to the Next Record in a Recordset
	Figure 5-5. Navigating to the Previous Record in a Recordset
	Figure 5-6. Navigating to the nth Record in a Recordset

	Using Parameterized Statements
	Figure 5-7. Writing Parameterized Data to a Table

	Using Stored Procedures
	Creating Stored Procedures
	Figure 5-8. Creating a Stored Procedure

	Running Stored Procedures without Parameters
	Figure 5-9. Front Panel Running a Stored Procedure
	Figure 5-10. Block Diagram Running a Stored Procedure

	Running Stored Procedures with Parameters
	Figure 5-11. Using Parameters with a Stored Procedure
	Figure 5-12. Using a Parameterized Stored Procedure

	Chapter 6 Building Applications
	Using the Database Connectivity Toolset Build Script
	Figure 6-1. Loading a Build Script
	Figure 6-2. Including MDAC Source Files with Your Application

	Installing MDAC
	Figure 6-3. Running the MDAC Installer with Options
	MDAC 2.6
	Using Non-English Versions of Windows

	Using Data Links and DSNs
	Figure 6-4. Including Data Links with Your Application
	Figure 6-5. Registering a UDL in a VI

	Appendix A SQL Quick-Reference
	Table A-1. SQL Commands
	Table A-2. SQL Objects
	Table A-3. SQL Clauses
	Table A-4. SQL Operators
	Table A-5. SQL Functions

	Appendix B References
	Appendix C Supported Data Types
	Table C-1. LabVIEW and the Database Toolset Data Types
	Table C-2. SQL-92 Data Types
	Table C-3. SQL Server Data Types
	Table C-4. ADO Data Types
	Table C-5. Oracle Data Types Mapped to ADO
	Table C-6. SQL Server Data Types Mapped to ADO
	Table C-7. Access Data Types Mapped to ADO
	Table C-8. Supported SQL Data Types by Database and ADO

	Appendix D Technical Support Resources
	Glossary
	A
	B-C
	D
	E
	F-I
	L-M
	N-O
	P
	Q-S
	T
	U-X

	Index
	A-C
	D
	E-L
	M-P
	R-S
	T-X

